Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -3, -1, 9, 6], R![1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -3, -1, 9, 6]), R([1]))
$y^2 + y = 6x^5 + 9x^4 - x^3 - 3x^2$
Invariants
| \( N \) | = | \( 20736 \) | = | \( 2^{8} \cdot 3^{4} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(373248\) | = | \( 2^{9} \cdot 3^{6} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
| \( I_2 \) | = | \(7008\) | = | \( 2^{5} \cdot 3 \cdot 73 \) |
| \( I_4 \) | = | \(1700352\) | = | \( 2^{9} \cdot 3^{4} \cdot 41 \) |
| \( I_6 \) | = | \(3259367424\) | = | \( 2^{17} \cdot 3^{4} \cdot 307 \) |
| \( I_{10} \) | = | \(1528823808\) | = | \( 2^{21} \cdot 3^{6} \) |
| \( J_2 \) | = | \(876\) | = | \( 2^{2} \cdot 3 \cdot 73 \) |
| \( J_4 \) | = | \(14262\) | = | \( 2 \cdot 3 \cdot 2377 \) |
| \( J_6 \) | = | \(207364\) | = | \( 2^{2} \cdot 47 \cdot 1103 \) |
| \( J_8 \) | = | \(-5438445\) | = | \( -1 \cdot 3 \cdot 5 \cdot 37 \cdot 41 \cdot 239 \) |
| \( J_{10} \) | = | \(373248\) | = | \( 2^{9} \cdot 3^{6} \) |
| \( g_1 \) | = | \(4146143186/3\) | ||
| \( g_2 \) | = | \(924693409/36\) | ||
| \( g_3 \) | = | \(276260689/648\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(C_2 \) | (GAP id : [2,1]) | |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![-1,-4,2],C![0,-1,1],C![0,0,1],C![1,0,0]];
All rational points: (-1 : -4 : 2), (0 : -1 : 1), (0 : 0 : 1), (1 : 0 : 0)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(2\)
Invariants of the Jacobian:
Analytic rank: \(0\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(2\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 1.0
Real period: 18.600159265208624917879119180
Tamagawa numbers: 2 (p = 2), 4 (p = 3)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\Z/{2}\Z \times \Z/{6}\Z\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $J(E_4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\) |
Decomposition
Simple over \(\overline{\Q}\)
Endomorphisms
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.339738624.10 with defining polynomial \(x^{8} + 4 x^{6} + 10 x^{4} + 24 x^{2} + 36\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):| \(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(6\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | the quaternion algebra over \(\Q\) of discriminant 6 |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{1}{15} a^{6} - \frac{1}{6} a^{4} - \frac{2}{3} a^{2} - \frac{3}{5}\) with minimal polynomial \(x^{2} - x + 1\):| \(\End (J_{F})\) | \(\simeq\) | \(\Z [3\sqrt{-1}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(-\frac{1}{10} a^{6} - \frac{2}{5}\) with minimal polynomial \(x^{2} + 2\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
not of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) \(\Q(\sqrt{6}) \) with generator \(-\frac{1}{6} a^{6} - \frac{2}{3} a^{4} - \frac{2}{3} a^{2} - 2\) with minimal polynomial \(x^{2} - 6\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R\) |
not of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) \(\Q(\sqrt{-2}, \sqrt{-3})\) with generator \(-\frac{2}{15} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{6}{5}\) with minimal polynomial \(x^{4} - 2 x^{2} + 4\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [3\sqrt{-1}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-1}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) 4.0.6144.1 with generator \(\frac{2}{45} a^{7} - \frac{1}{18} a^{5} + \frac{1}{9} a^{3} + \frac{11}{15} a\) with minimal polynomial \(x^{4} - 4 x^{2} + 6\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{6}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{6}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) 4.2.18432.2 with generator \(\frac{7}{90} a^{7} + \frac{5}{18} a^{5} + \frac{4}{9} a^{3} + \frac{23}{15} a\) with minimal polynomial \(x^{4} + 4 x^{2} - 2\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{3}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) 4.2.18432.2 with generator \(\frac{1}{18} a^{7} + \frac{1}{18} a^{5} - \frac{1}{9} a^{3} - \frac{1}{3} a\) with minimal polynomial \(x^{4} + 4 x^{2} - 2\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{3}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{3}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
of \(\GL_2\)-type, simpleOver subfield \(F \simeq \) 4.0.6144.1 with generator \(-\frac{1}{15} a^{7} - \frac{1}{6} a^{5} - \frac{2}{3} a^{3} - \frac{3}{5} a\) with minimal polynomial \(x^{4} - 4 x^{2} + 6\):
| \(\End (J_{F})\) | \(\simeq\) | \(\Z [\sqrt{6}]\) |
| \(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{6}) \) |
| \(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
of \(\GL_2\)-type, simple