Minimal equation
Minimal equation
Simplified equation
$y^2 + x^3y = -2$ | (homogenize, simplify) |
$y^2 + x^3y = -2z^6$ | (dehomogenize, simplify) |
$y^2 = x^6 - 8$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(20736\) | \(=\) | \( 2^{8} \cdot 3^{4} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(373248\) | \(=\) | \( 2^{9} \cdot 3^{6} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(40\) | \(=\) | \( 2^{3} \cdot 5 \) |
\( I_4 \) | \(=\) | \(45\) | \(=\) | \( 3^{2} \cdot 5 \) |
\( I_6 \) | \(=\) | \(555\) | \(=\) | \( 3 \cdot 5 \cdot 37 \) |
\( I_{10} \) | \(=\) | \(6\) | \(=\) | \( 2 \cdot 3 \) |
\( J_2 \) | \(=\) | \(240\) | \(=\) | \( 2^{4} \cdot 3 \cdot 5 \) |
\( J_4 \) | \(=\) | \(1320\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
\( J_6 \) | \(=\) | \(-2560\) | \(=\) | \( - 2^{9} \cdot 5 \) |
\( J_8 \) | \(=\) | \(-589200\) | \(=\) | \( - 2^{4} \cdot 3 \cdot 5^{2} \cdot 491 \) |
\( J_{10} \) | \(=\) | \(373248\) | \(=\) | \( 2^{9} \cdot 3^{6} \) |
\( g_1 \) | \(=\) | \(6400000/3\) | ||
\( g_2 \) | \(=\) | \(440000/9\) | ||
\( g_3 \) | \(=\) | \(-32000/81\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_3:D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{6}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2\) | \(0\) | \(6\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x^2 + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 + 4xz^2\) | \(0\) | \(6\) |
2-torsion field: \(\Q(\sqrt{2}, \sqrt{-3})\)
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 1 \) |
Real period: | \( 7.223966 \) |
Tamagawa product: | \( 6 \) |
Torsion order: | \( 6 \) |
Leading coefficient: | \( 1.203994 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(8\) | \(9\) | \(3\) | \(1\) | |
\(3\) | \(4\) | \(6\) | \(2\) | \(1\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.180.4 | yes |
\(3\) | 3.8640.8 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $D_{2,1}$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{U}(1)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 576.f
Elliptic curve isogeny class 36.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-2}, \sqrt{-3})\) with defining polynomial \(x^{4} - 2 x^{2} + 4\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(16\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q(\sqrt{-3}) \)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\C)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-2}) \) with generator \(-\frac{1}{2} a^{3}\) with minimal polynomial \(x^{2} + 2\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(\frac{1}{2} a^{2}\) with minimal polynomial \(x^{2} - x + 1\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(4\) in \(\Z [\frac{1 + \sqrt{-3}}{2}] \times \Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) \(\times\) \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\sqrt{6}) \) with generator \(\frac{1}{2} a^{3} - 2 a\) with minimal polynomial \(x^{2} - 6\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(12\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple