Properties

Label 202500.a.405000.1
Conductor $202500$
Discriminant $-405000$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_3$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -2x^5 + 6x^4 - 6x^3$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -2x^5z + 6x^4z^2 - 6x^3z^3$ (dehomogenize, simplify)
$y^2 = x^6 - 8x^5 + 26x^4 - 22x^3 + x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 0, -6, 6, -2]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 0, -6, 6, -2], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, 1, -22, 26, -8, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(202500\) \(=\) \( 2^{2} \cdot 3^{4} \cdot 5^{4} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-405000\) \(=\) \( - 2^{3} \cdot 3^{4} \cdot 5^{4} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(804\) \(=\)  \( 2^{2} \cdot 3 \cdot 67 \)
\( I_4 \)  \(=\) \(72225\) \(=\)  \( 3^{3} \cdot 5^{2} \cdot 107 \)
\( I_6 \)  \(=\) \(13647825\) \(=\)  \( 3^{3} \cdot 5^{2} \cdot 20219 \)
\( I_{10} \)  \(=\) \(-51840000\) \(=\)  \( - 2^{10} \cdot 3^{4} \cdot 5^{4} \)
\( J_2 \)  \(=\) \(201\) \(=\)  \( 3 \cdot 67 \)
\( J_4 \)  \(=\) \(-1326\) \(=\)  \( - 2 \cdot 3 \cdot 13 \cdot 17 \)
\( J_6 \)  \(=\) \(-2732\) \(=\)  \( - 2^{2} \cdot 683 \)
\( J_8 \)  \(=\) \(-576852\) \(=\)  \( - 2^{2} \cdot 3 \cdot 53 \cdot 907 \)
\( J_{10} \)  \(=\) \(-405000\) \(=\)  \( - 2^{3} \cdot 3^{4} \cdot 5^{4} \)
\( g_1 \)  \(=\) \(-4050375321/5000\)
\( g_2 \)  \(=\) \(66468623/2500\)
\( g_3 \)  \(=\) \(3065987/11250\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((5 : -28 : 2)\) \((-2 : 48 : 3)\) \((-2 : -49 : 3)\) \((3 : -65 : 5)\) \((5 : -125 : 2)\) \((3 : -162 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((5 : -28 : 2)\) \((-2 : 48 : 3)\) \((-2 : -49 : 3)\) \((3 : -65 : 5)\) \((5 : -125 : 2)\) \((3 : -162 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-2 : -97 : 3)\) \((-2 : 97 : 3)\) \((5 : -97 : 2)\) \((5 : 97 : 2)\) \((3 : -97 : 5)\) \((3 : 97 : 5)\)

magma: [C![-2,-49,3],C![-2,48,3],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![3,-162,5],C![3,-65,5],C![5,-125,2],C![5,-28,2]]; // minimal model
 
magma: [C![-2,-97,3],C![-2,97,3],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![3,-97,5],C![3,97,5],C![5,-97,2],C![5,97,2]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.199552\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.199552\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.199552\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.199552\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.199552\) \(\infty\)
\((1 : 1 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.199552\) \(\infty\)

2-torsion field: 6.0.25920000.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.029865 \)
Real period: \( 18.48871 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.656551 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(3\) \(1 + T + T^{2}\)
\(3\) \(4\) \(4\) \(1\) \(1 + 3 T + 3 T^{2}\)
\(5\) \(4\) \(4\) \(1\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.3 no
\(3\) 3.960.8 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_3$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) \(\Q(\zeta_{9})^+\) with defining polynomial:
  \(x^{3} - 3 x - 1\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{35775}{16} b^{2} + \frac{7155}{8} b + \frac{107325}{16}\)
  \(g_6 = \frac{11533995}{64} b^{2} - \frac{1048545}{16} b - \frac{1048545}{2}\)
   Conductor norm: 125000

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\zeta_{9})^+\) with defining polynomial \(x^{3} - 3 x - 1\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);