Properties

Label 20172.b.968256.1
Conductor $20172$
Discriminant $-968256$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^6 - x^5 - 2x^4 + 4x^3 - 3x + 1$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^6 - x^5z - 2x^4z^2 + 4x^3z^3 - 3xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = 4x^6 - 4x^5 - 7x^4 + 18x^3 + x^2 - 12x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -3, 0, 4, -2, -1, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -3, 0, 4, -2, -1, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([4, -12, 1, 18, -7, -4, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(20172\) \(=\) \( 2^{2} \cdot 3 \cdot 41^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-968256\) \(=\) \( - 2^{6} \cdot 3^{2} \cdot 41^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(68\) \(=\)  \( 2^{2} \cdot 17 \)
\( I_4 \)  \(=\) \(193729\) \(=\)  \( 23 \cdot 8423 \)
\( I_6 \)  \(=\) \(-27415199\) \(=\)  \( - 7 \cdot 613 \cdot 6389 \)
\( I_{10} \)  \(=\) \(-123936768\) \(=\)  \( - 2^{13} \cdot 3^{2} \cdot 41^{2} \)
\( J_2 \)  \(=\) \(17\) \(=\)  \( 17 \)
\( J_4 \)  \(=\) \(-8060\) \(=\)  \( - 2^{2} \cdot 5 \cdot 13 \cdot 31 \)
\( J_6 \)  \(=\) \(418896\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 2909 \)
\( J_8 \)  \(=\) \(-14460592\) \(=\)  \( - 2^{4} \cdot 83 \cdot 10889 \)
\( J_{10} \)  \(=\) \(-968256\) \(=\)  \( - 2^{6} \cdot 3^{2} \cdot 41^{2} \)
\( g_1 \)  \(=\) \(-1419857/968256\)
\( g_2 \)  \(=\) \(9899695/242064\)
\( g_3 \)  \(=\) \(-840701/6724\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\)
\((1 : -2 : 1)\) \((1 : -3 : 2)\) \((2 : 3 : 1)\) \((-3 : 5 : 2)\) \((2 : -9 : 1)\) \((-3 : -11 : 2)\)
\((3 : -52 : 5)\) \((3 : -68 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\)
\((1 : -2 : 1)\) \((1 : -3 : 2)\) \((2 : 3 : 1)\) \((-3 : 5 : 2)\) \((2 : -9 : 1)\) \((-3 : -11 : 2)\)
\((3 : -52 : 5)\) \((3 : -68 : 5)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((-1 : 0 : 1)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\) \((1 : 0 : 2)\)
\((1 : -2 : 1)\) \((1 : 2 : 1)\) \((2 : -12 : 1)\) \((2 : 12 : 1)\) \((-3 : -16 : 2)\) \((-3 : 16 : 2)\)
\((3 : -16 : 5)\) \((3 : 16 : 5)\)

magma: [C![-3,-11,2],C![-3,5,2],C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,-3,2],C![1,-2,1],C![1,-1,0],C![1,0,1],C![1,1,0],C![2,-9,1],C![2,3,1],C![3,-68,5],C![3,-52,5]]; // minimal model
 
magma: [C![-3,-16,2],C![-3,16,2],C![-1,0,1],C![0,-2,1],C![0,2,1],C![1,0,2],C![1,-2,1],C![1,-2,0],C![1,2,1],C![1,2,0],C![2,-12,1],C![2,12,1],C![3,-16,5],C![3,16,5]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0.158713\) \(\infty\)
\((0 : -1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.112353\) \(\infty\)
\((-1 : 0 : 1) + (1 : -3 : 2) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-xz^2 - z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0.158713\) \(\infty\)
\((0 : -1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.112353\) \(\infty\)
\((-1 : 0 : 1) + (1 : -3 : 2) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-xz^2 - z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : 2 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + 3xz^2 + 2z^3\) \(0.158713\) \(\infty\)
\((0 : -2 : 1) - (1 : 2 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-2x^3 + x^2z + xz^2 - 2z^3\) \(0.112353\) \(\infty\)
\(2 \cdot(-1 : 0 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \((x + z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(x^2z - xz^2 - 2z^3\) \(0\) \(2\)

2-torsion field: 4.0.656.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(3\)
Regulator: \( 0.017831 \)
Real period: \( 16.48290 \)
Tamagawa product: \( 8 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.587845 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(6\) \(4\) \(( 1 + T )^{2}\)
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(41\) \(2\) \(2\) \(1\) \(( 1 + T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.3 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 246.a
  Elliptic curve isogeny class 82.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);