L-function data
Analytic rank: | \(0\) | ||||||||||||||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_1$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 14.a
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 196.a
Label | Equation |
---|---|
196.a.21952.1 | \(y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1\) |