Properties

Label 188356.a.376712.1
Conductor $188356$
Discriminant $376712$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = x^5 - 2x^4 - 6x^3 - 3x^2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = x^5z - 2x^4z^2 - 6x^3z^3 - 3x^2z^4$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 6x^4 - 22x^3 - 11x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -3, -6, -2, 1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -3, -6, -2, 1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -11, -22, -6, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(188356\) \(=\) \( 2^{2} \cdot 7^{2} \cdot 31^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(376712\) \(=\) \( 2^{3} \cdot 7^{2} \cdot 31^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(964\) \(=\)  \( 2^{2} \cdot 241 \)
\( I_4 \)  \(=\) \(26257\) \(=\)  \( 7 \cdot 11^{2} \cdot 31 \)
\( I_6 \)  \(=\) \(7791385\) \(=\)  \( 5 \cdot 7 \cdot 31 \cdot 43 \cdot 167 \)
\( I_{10} \)  \(=\) \(48219136\) \(=\)  \( 2^{10} \cdot 7^{2} \cdot 31^{2} \)
\( J_2 \)  \(=\) \(241\) \(=\)  \( 241 \)
\( J_4 \)  \(=\) \(1326\) \(=\)  \( 2 \cdot 3 \cdot 13 \cdot 17 \)
\( J_6 \)  \(=\) \(-2572\) \(=\)  \( - 2^{2} \cdot 643 \)
\( J_8 \)  \(=\) \(-594532\) \(=\)  \( - 2^{2} \cdot 148633 \)
\( J_{10} \)  \(=\) \(376712\) \(=\)  \( 2^{3} \cdot 7^{2} \cdot 31^{2} \)
\( g_1 \)  \(=\) \(812990017201/376712\)
\( g_2 \)  \(=\) \(9280356423/188356\)
\( g_3 \)  \(=\) \(-37346083/94178\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((3 : -4 : 1)\) \((-1 : -12 : 4)\) \((-4 : 25 : 3)\) \((3 : -27 : 1)\) \((-1 : -35 : 4)\) \((-4 : 48 : 3)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\)
\((3 : -4 : 1)\) \((-1 : -12 : 4)\) \((-4 : 25 : 3)\) \((3 : -27 : 1)\) \((-1 : -35 : 4)\) \((-4 : 48 : 3)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((3 : -23 : 1)\) \((3 : 23 : 1)\) \((-1 : -23 : 4)\) \((-1 : 23 : 4)\) \((-4 : -23 : 3)\) \((-4 : 23 : 3)\)

magma: [C![-4,25,3],C![-4,48,3],C![-1,-35,4],C![-1,-12,4],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0],C![3,-27,1],C![3,-4,1]]; // minimal model
 
magma: [C![-4,-23,3],C![-4,23,3],C![-1,-23,4],C![-1,23,4],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,1,0],C![3,-23,1],C![3,23,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.208232\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.208232\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.208232\) \(\infty\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.208232\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 + z^3\) \(0.208232\) \(\infty\)
\((0 : 1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.208232\) \(\infty\)

2-torsion field: 6.6.24109568.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.032520 \)
Real period: \( 14.03010 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.368801 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(3\) \(1 + T + T^{2}\)
\(7\) \(2\) \(2\) \(1\) \(1 + 5 T + 7 T^{2}\)
\(31\) \(2\) \(2\) \(1\) \(1 + 4 T + 31 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.3 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.481170140857.1 with defining polynomial:
  \(x^{6} - x^{5} - 90 x^{4} + 237 x^{3} + 1408 x^{2} - 2640 x - 7811\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = \frac{31616709}{2224} b^{5} - \frac{508297487}{8896} b^{4} - \frac{9846895747}{8896} b^{3} + \frac{59702831507}{8896} b^{2} - \frac{1112605409}{4448} b - \frac{327094910479}{8896}\)
  \(g_6 = -\frac{6809701164035}{71168} b^{5} + \frac{13686477866341}{35584} b^{4} + \frac{8284610658751}{1112} b^{3} - \frac{3214989603474019}{71168} b^{2} + \frac{120237864274395}{71168} b + \frac{17614540690886321}{71168}\)
   Conductor norm: 64

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.481170140857.1 with defining polynomial \(x^{6} - x^{5} - 90 x^{4} + 237 x^{3} + 1408 x^{2} - 2640 x - 7811\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{217}) \) with generator \(-\frac{3}{139} a^{5} - \frac{16}{139} a^{4} + \frac{215}{139} a^{3} + \frac{697}{139} a^{2} - \frac{3192}{139} a - \frac{8404}{139}\) with minimal polynomial \(x^{2} - x - 54\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.47089.1 with generator \(\frac{9}{2224} a^{5} + \frac{3}{139} a^{4} - \frac{253}{1112} a^{3} - \frac{1813}{2224} a^{2} + \frac{1931}{2224} a + \frac{29243}{2224}\) with minimal polynomial \(x^{3} - x^{2} - 72 x - 209\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);