Properties

Label 1854.a.11124.1
Conductor 1854
Discriminant -11124
Mordell-Weil group \(\Z \times \Z/{3}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + x)y = -2x^3 - 2x^2 + x + 1$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + xz^2)y = -2x^3z^3 - 2x^2z^4 + xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 + 3x^4 - 6x^3 - 7x^2 + 4x + 4$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 1, -2, -2]), R([0, 1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 1, -2, -2], R![0, 1, 1, 1]);
 
sage: X = HyperellipticCurve(R([4, 4, -7, -6, 3, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1854\) \(=\) \( 2 \cdot 3^{2} \cdot 103 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-11124\) \(=\) \( - 2^{2} \cdot 3^{3} \cdot 103 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(-88\) \(=\)  \( - 2^{3} \cdot 11 \)
\( I_4 \)  \(=\) \(78820\) \(=\)  \( 2^{2} \cdot 5 \cdot 7 \cdot 563 \)
\( I_6 \)  \(=\) \(-7854232\) \(=\)  \( - 2^{3} \cdot 263 \cdot 3733 \)
\( I_{10} \)  \(=\) \(-45563904\) \(=\)  \( - 2^{14} \cdot 3^{3} \cdot 103 \)
\( J_2 \)  \(=\) \(-11\) \(=\)  \( -11 \)
\( J_4 \)  \(=\) \(-816\) \(=\)  \( - 2^{4} \cdot 3 \cdot 17 \)
\( J_6 \)  \(=\) \(11124\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 103 \)
\( J_8 \)  \(=\) \(-197055\) \(=\)  \( - 3^{2} \cdot 5 \cdot 29 \cdot 151 \)
\( J_{10} \)  \(=\) \(-11124\) \(=\)  \( - 2^{2} \cdot 3^{3} \cdot 103 \)
\( g_1 \)  \(=\) \(161051/11124\)
\( g_2 \)  \(=\) \(-90508/927\)
\( g_3 \)  \(=\) \(-121\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((-2 : -1 : 1)\) \((1 : -2 : 1)\) \((-2 : 7 : 1)\)

magma: [C![-2,-1,1],C![-2,7,1],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0]];
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \times \Z/{3}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.016344\) \(\infty\)
\(2 \cdot(0 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0\) \(3\)

2-torsion field: 6.0.44496.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.016344 \)
Real period: \( 25.05474 \)
Tamagawa product: \( 6 \)
Torsion order:\( 3 \)
Leading coefficient: \( 0.273003 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3\) \(2\) \(3\) \(3\) \(1 + T + T^{2}\)
\(103\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 103 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).