Properties

Label 18252.a.328536.1
Conductor 18252
Discriminant 328536
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: Magma / SageMath

Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -3, 2, 2, -1], R![1, 1, 0, 1]);
 
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -3, 2, 2, -1]), R([1, 1, 0, 1]))
 

$y^2 + (x^3 + x + 1)y = -x^4 + 2x^3 + 2x^2 - 3x$

Invariants

magma: Conductor(LSeries(C)); Factorization($1);
 
\( N \)  =  \( 18252 \)  =  \( 2^{2} \cdot 3^{3} \cdot 13^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 
\( \Delta \)  =  \(328536\)  =  \( 2^{3} \cdot 3^{5} \cdot 13^{2} \)

Igusa-Clebsch invariants

magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
 
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 

Igusa invariants

magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
 

G2 invariants

magma: G2Invariants(C);
 

\( I_2 \)  =  \(648\)  =  \( 2^{3} \cdot 3^{4} \)
\( I_4 \)  =  \(185796\)  =  \( 2^{2} \cdot 3^{2} \cdot 13 \cdot 397 \)
\( I_6 \)  =  \(-2301624\)  =  \( -1 \cdot 2^{3} \cdot 3^{2} \cdot 13 \cdot 2459 \)
\( I_{10} \)  =  \(1345683456\)  =  \( 2^{15} \cdot 3^{5} \cdot 13^{2} \)
\( J_2 \)  =  \(81\)  =  \( 3^{4} \)
\( J_4 \)  =  \(-1662\)  =  \( -1 \cdot 2 \cdot 3 \cdot 277 \)
\( J_6 \)  =  \(48772\)  =  \( 2^{2} \cdot 89 \cdot 137 \)
\( J_8 \)  =  \(297072\)  =  \( 2^{4} \cdot 3^{2} \cdot 2063 \)
\( J_{10} \)  =  \(328536\)  =  \( 2^{3} \cdot 3^{5} \cdot 13^{2} \)
\( g_1 \)  =  \(14348907/1352\)
\( g_2 \)  =  \(-1817397/676\)
\( g_3 \)  =  \(329211/338\)
Alternative geometric invariants: Igusa-Clebsch, Igusa, G2

Automorphism group

magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X)\)\(\simeq\) \(C_2 \) (GAP id : [2,1])
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) \(C_2 \) (GAP id : [2,1])

Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

This curve is locally solvable everywhere.

magma: [C![-2,3,1],C![-2,6,1],C![-1,-12,2],C![-1,-1,1],C![-1,2,1],C![-1,9,2],C![0,-1,1],C![0,0,1],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![9,-756,2],C![9,-17,2]];
 

Known rational points: (-2 : 3 : 1), (-2 : 6 : 1), (-1 : -12 : 2), (-1 : -1 : 1), (-1 : 2 : 1), (-1 : 9 : 2), (0 : -1 : 1), (0 : 0 : 1), (1 : -3 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 0 : 1), (9 : -756 : 2), (9 : -17 : 2)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

Number of rational Weierstrass points: \(0\)

Invariants of the Jacobian:

Analytic rank*: \(2\)

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
 

2-Selmer rank: \(2\)

magma: HasSquareSha(Jacobian(C));
 

Order of Ш*: square

Regulator: 0.041338934918

Real period: 17.410898313879982931291375815

Tamagawa numbers: 3 (p = 2), 3 (p = 3), 1 (p = 13)

magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
 

Torsion: \(\Z/{3}\Z\)

2-torsion field: 6.2.2336256.2

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition

Simple over \(\overline{\Q}\)

Endomorphisms

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):
\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).