Properties

Label 18080.b.180800.1
Conductor $18080$
Discriminant $-180800$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = -x^4 - x^3 + x^2 - x + 2$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = -x^4z^2 - x^3z^3 + x^2z^4 - xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 2x^4 - 4x^3 + 5x^2 - 4x + 8$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, -1, 1, -1, -1]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, -1, 1, -1, -1], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([8, -4, 5, -4, -2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(18080\) \(=\) \( 2^{5} \cdot 5 \cdot 113 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-180800\) \(=\) \( - 2^{6} \cdot 5^{2} \cdot 113 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(208\) \(=\)  \( 2^{4} \cdot 13 \)
\( I_4 \)  \(=\) \(2563\) \(=\)  \( 11 \cdot 233 \)
\( I_6 \)  \(=\) \(152516\) \(=\)  \( 2^{2} \cdot 7 \cdot 13 \cdot 419 \)
\( I_{10} \)  \(=\) \(22600\) \(=\)  \( 2^{3} \cdot 5^{2} \cdot 113 \)
\( J_2 \)  \(=\) \(208\) \(=\)  \( 2^{4} \cdot 13 \)
\( J_4 \)  \(=\) \(94\) \(=\)  \( 2 \cdot 47 \)
\( J_6 \)  \(=\) \(-16016\) \(=\)  \( - 2^{4} \cdot 7 \cdot 11 \cdot 13 \)
\( J_8 \)  \(=\) \(-835041\) \(=\)  \( - 3 \cdot 278347 \)
\( J_{10} \)  \(=\) \(180800\) \(=\)  \( 2^{6} \cdot 5^{2} \cdot 113 \)
\( g_1 \)  \(=\) \(6083264512/2825\)
\( g_2 \)  \(=\) \(13217152/2825\)
\( g_3 \)  \(=\) \(-10826816/2825\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((-2 : 0 : 1)\) \((1 : -2 : 1)\) \((-2 : 10 : 1)\)
\((89 : 42589520 : 329)\) \((89 : -52927938 : 329)\)
All points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((-2 : 0 : 1)\) \((1 : -2 : 1)\) \((-2 : 10 : 1)\)
\((89 : 42589520 : 329)\) \((89 : -52927938 : 329)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((-2 : -10 : 1)\) \((-2 : 10 : 1)\)
\((89 : -95517458 : 329)\) \((89 : 95517458 : 329)\)

magma: [C![-2,0,1],C![-2,10,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![89,-52927938,329],C![89,42589520,329]]; // minimal model
 
magma: [C![-2,-10,1],C![-2,10,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![89,-95517458,329],C![89,95517458,329]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0.061051\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : 0 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0.061051\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((1 : 2 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + 2z^3\) \(0.061051\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2\) \(0\) \(2\)

2-torsion field: 4.0.1808.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.061051 \)
Real period: \( 15.52813 \)
Tamagawa product: \( 4 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.948017 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(5\) \(6\) \(2\) \(1 + T + 2 T^{2}\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 2 T + 5 T^{2} )\)
\(113\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 2 T + 113 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);