Properties

Label 1791.a.5373.1
Conductor $1791$
Discriminant $5373$
Mordell-Weil group \(\Z \oplus \Z/{5}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = 3x^5 + 6x^4 + 2x^3 - x^2$ (homogenize, simplify)
$y^2 + z^3y = 3x^5z + 6x^4z^2 + 2x^3z^3 - x^2z^4$ (dehomogenize, simplify)
$y^2 = 12x^5 + 24x^4 + 8x^3 - 4x^2 + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, 2, 6, 3]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, 2, 6, 3], R![1]);
 
sage: X = HyperellipticCurve(R([1, 0, -4, 8, 24, 12]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1791\) \(=\) \( 3^{2} \cdot 199 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(5373\) \(=\) \( 3^{3} \cdot 199 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(480\) \(=\)  \( 2^{5} \cdot 3 \cdot 5 \)
\( I_4 \)  \(=\) \(5904\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 41 \)
\( I_6 \)  \(=\) \(740016\) \(=\)  \( 2^{4} \cdot 3^{4} \cdot 571 \)
\( I_{10} \)  \(=\) \(21492\) \(=\)  \( 2^{2} \cdot 3^{3} \cdot 199 \)
\( J_2 \)  \(=\) \(240\) \(=\)  \( 2^{4} \cdot 3 \cdot 5 \)
\( J_4 \)  \(=\) \(1416\) \(=\)  \( 2^{3} \cdot 3 \cdot 59 \)
\( J_6 \)  \(=\) \(15376\) \(=\)  \( 2^{4} \cdot 31^{2} \)
\( J_8 \)  \(=\) \(421296\) \(=\)  \( 2^{4} \cdot 3 \cdot 67 \cdot 131 \)
\( J_{10} \)  \(=\) \(5373\) \(=\)  \( 3^{3} \cdot 199 \)
\( g_1 \)  \(=\) \(29491200000/199\)
\( g_2 \)  \(=\) \(724992000/199\)
\( g_3 \)  \(=\) \(98406400/597\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-2 : -12 : 3)\)
\((-2 : -15 : 3)\) \((3 : 35 : 1)\) \((3 : -36 : 1)\)
All points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-2 : -12 : 3)\)
\((-2 : -15 : 3)\) \((3 : 35 : 1)\) \((3 : -36 : 1)\)
All points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((-2 : -3 : 3)\)
\((-2 : 3 : 3)\) \((3 : -71 : 1)\) \((3 : 71 : 1)\)

magma: [C![-2,-15,3],C![-2,-12,3],C![-1,-1,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,0,0],C![3,-36,1],C![3,35,1]]; // minimal model
 
magma: [C![-2,-3,3],C![-2,3,3],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,0,0],C![3,-71,1],C![3,71,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{5}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.123951\) \(\infty\)
\((-1 : -1 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(5\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.123951\) \(\infty\)
\((-1 : -1 : 1) + (0 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(5\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.123951\) \(\infty\)
\((-1 : -1 : 1) + (0 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 + z^3\) \(0\) \(5\)

2-torsion field: 5.1.9552.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.123951 \)
Real period: \( 26.79475 \)
Tamagawa product: \( 2 \)
Torsion order:\( 5 \)
Leading coefficient: \( 0.265700 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(2\) \(3\) \(2\) \(1 + T + 3 T^{2}\)
\(199\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 199 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no
\(5\) not computed yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);