Properties

Label 1740.a.104400.1
Conductor $1740$
Discriminant $-104400$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{6}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = 2x^5 - 14x^3 - 5x^2 + 30x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = 2x^5z - 14x^3z^3 - 5x^2z^4 + 30xz^5$ (dehomogenize, simplify)
$y^2 = 8x^5 + x^4 - 54x^3 - 19x^2 + 120x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 30, -5, -14, 0, 2]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 30, -5, -14, 0, 2], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, 120, -19, -54, 1, 8]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1740\) \(=\) \( 2^{2} \cdot 3 \cdot 5 \cdot 29 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-104400\) \(=\) \( - 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(28100\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 281 \)
\( I_4 \)  \(=\) \(7231657\) \(=\)  \( 7231657 \)
\( I_6 \)  \(=\) \(99549877317\) \(=\)  \( 3 \cdot 11 \cdot 1657 \cdot 1820557 \)
\( I_{10} \)  \(=\) \(-13363200\) \(=\)  \( - 2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 29 \)
\( J_2 \)  \(=\) \(7025\) \(=\)  \( 5^{2} \cdot 281 \)
\( J_4 \)  \(=\) \(1754957\) \(=\)  \( 1754957 \)
\( J_6 \)  \(=\) \(7872289\) \(=\)  \( 19 \cdot 414331 \)
\( J_8 \)  \(=\) \(-756142810406\) \(=\)  \( - 2 \cdot 29 \cdot 13036945007 \)
\( J_{10} \)  \(=\) \(-104400\) \(=\)  \( - 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 29 \)
\( g_1 \)  \(=\) \(-684371056797265625/4176\)
\( g_2 \)  \(=\) \(-24336911168273125/4176\)
\( g_3 \)  \(=\) \(-15540095293225/4176\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (2 : -2 : 1),\, (2 : -4 : 1),\, (15 : -1380 : 8)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (2 : -2 : 1),\, (2 : -4 : 1),\, (15 : -1380 : 8)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (2 : -2 : 1),\, (2 : 2 : 1),\, (15 : 0 : 8)\)

magma: [C![0,0,1],C![1,0,0],C![2,-4,1],C![2,-2,1],C![15,-1380,8]]; // minimal model
 
magma: [C![0,0,1],C![1,0,0],C![2,-2,1],C![2,2,1],C![15,0,8]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (15 : -1380 : 8) - 2 \cdot(1 : 0 : 0)\) \(x (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(-23xz^2\) \(0\) \(2\)
\((2 : -4 : 1) + (15 : -1380 : 8) - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(-167xz^2 + 270z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (15 : -1380 : 8) - 2 \cdot(1 : 0 : 0)\) \(x (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(-23xz^2\) \(0\) \(2\)
\((2 : -4 : 1) + (15 : -1380 : 8) - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(-167xz^2 + 270z^3\) \(0\) \(6\)
Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(x^2z - 45xz^2\) \(0\) \(2\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (8x - 15z)\) \(=\) \(0,\) \(16y\) \(=\) \(x^2z - 333xz^2 + 540z^3\) \(0\) \(6\)

2-torsion field: 3.1.116.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 5.116046 \)
Tamagawa product: \( 16 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.568449 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(4\) \(( 1 - T )( 1 + T )\)
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - T + 3 T^{2} )\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 3 T + 5 T^{2} )\)
\(29\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 6 T + 29 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes
\(3\) 3.80.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);