Properties

Label 1738.a.137302.1
Conductor $1738$
Discriminant $-137302$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = x^5 - 5x^3 - 66x^2 - 101x - 41$ (homogenize, simplify)
$y^2 + xz^2y = x^5z - 5x^3z^3 - 66x^2z^4 - 101xz^5 - 41z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 - 20x^3 - 263x^2 - 404x - 164$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-41, -101, -66, -5, 0, 1]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-41, -101, -66, -5, 0, 1], R![0, 1]);
 
sage: X = HyperellipticCurve(R([-164, -404, -263, -20, 0, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1738\) \(=\) \( 2 \cdot 11 \cdot 79 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-137302\) \(=\) \( - 2 \cdot 11 \cdot 79^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(15560\) \(=\)  \( 2^{3} \cdot 5 \cdot 389 \)
\( I_4 \)  \(=\) \(2578060\) \(=\)  \( 2^{2} \cdot 5 \cdot 128903 \)
\( I_6 \)  \(=\) \(42581573889\) \(=\)  \( 3 \cdot 14193857963 \)
\( I_{10} \)  \(=\) \(549208\) \(=\)  \( 2^{3} \cdot 11 \cdot 79^{2} \)
\( J_2 \)  \(=\) \(7780\) \(=\)  \( 2^{2} \cdot 5 \cdot 389 \)
\( J_4 \)  \(=\) \(2092340\) \(=\)  \( 2^{2} \cdot 5 \cdot 233 \cdot 449 \)
\( J_6 \)  \(=\) \(-2712635321\) \(=\)  \( - 11 \cdot 29 \cdot 8503559 \)
\( J_8 \)  \(=\) \(-6370547368245\) \(=\)  \( - 3 \cdot 5 \cdot 17 \cdot 1019 \cdot 24516721 \)
\( J_{10} \)  \(=\) \(137302\) \(=\)  \( 2 \cdot 11 \cdot 79^{2} \)
\( g_1 \)  \(=\) \(14251743233518400000/68651\)
\( g_2 \)  \(=\) \(492652910653840000/68651\)
\( g_3 \)  \(=\) \(-7463248898346200/6241\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)
All points: \((1 : 0 : 0)\)

magma: [C![1,0,0]]; // minimal model
 
magma: [C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 4xz - 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 4xz - 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 4xz - 4z^2\) \(=\) \(0,\) \(2y\) \(=\) \(-xz^2\) \(0\) \(2\)

2-torsion field: 6.2.247808.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 0.974166 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.487083 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 2 T^{2} )\)
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 4 T + 11 T^{2} )\)
\(79\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 - 16 T + 79 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);