Properties

Label 1689.a.45603.1
Conductor $1689$
Discriminant $-45603$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = x^5 - 6x^4 + 21x^3 + 15x^2 + 3x$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = x^5z - 6x^4z^2 + 21x^3z^3 + 15x^2z^4 + 3xz^5$ (dehomogenize, simplify)
$y^2 = 4x^5 - 23x^4 + 86x^3 + 63x^2 + 14x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 3, 15, 21, -6, 1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 3, 15, 21, -6, 1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 14, 63, 86, -23, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1689\) \(=\) \( 3 \cdot 563 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-45603\) \(=\) \( - 3^{4} \cdot 563 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(34900\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 349 \)
\( I_4 \)  \(=\) \(-37799\) \(=\)  \( -37799 \)
\( I_6 \)  \(=\) \(-434488675\) \(=\)  \( - 5^{2} \cdot 19 \cdot 914713 \)
\( I_{10} \)  \(=\) \(-5837184\) \(=\)  \( - 2^{7} \cdot 3^{4} \cdot 563 \)
\( J_2 \)  \(=\) \(8725\) \(=\)  \( 5^{2} \cdot 349 \)
\( J_4 \)  \(=\) \(3173476\) \(=\)  \( 2^{2} \cdot 127 \cdot 6247 \)
\( J_6 \)  \(=\) \(1539708400\) \(=\)  \( 2^{4} \cdot 5^{2} \cdot 347 \cdot 11093 \)
\( J_8 \)  \(=\) \(840751466856\) \(=\)  \( 2^{3} \cdot 3 \cdot 7 \cdot 139 \cdot 36003403 \)
\( J_{10} \)  \(=\) \(-45603\) \(=\)  \( - 3^{4} \cdot 563 \)
\( g_1 \)  \(=\) \(-50562341569814453125/45603\)
\( g_2 \)  \(=\) \(-2107810313223812500/45603\)
\( g_3 \)  \(=\) \(-117211264267750000/45603\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (2 : 10 : 1),\, (2 : -17 : 1),\, (-1 : -26 : 4)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (2 : 10 : 1),\, (2 : -17 : 1),\, (-1 : -26 : 4)\)
All points: \((1 : 0 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (-1 : 0 : 4),\, (2 : -27 : 1),\, (2 : 27 : 1)\)

magma: [C![-1,-26,4],C![0,-1,1],C![0,0,1],C![1,0,0],C![2,-17,1],C![2,10,1]]; // minimal model
 
magma: [C![-1,0,4],C![0,-1,1],C![0,1,1],C![1,0,0],C![2,-27,1],C![2,27,1]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 6xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(9xz^2 + z^3\) \(0.055529\) \(\infty\)
\((-1 : -26 : 4) - (1 : 0 : 0)\) \(4x + z\) \(=\) \(0,\) \(32y\) \(=\) \(-13z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 6xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(9xz^2 + z^3\) \(0.055529\) \(\infty\)
\((-1 : -26 : 4) - (1 : 0 : 0)\) \(4x + z\) \(=\) \(0,\) \(32y\) \(=\) \(-13z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - 6xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + 19xz^2 + 3z^3\) \(0.055529\) \(\infty\)
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(4x + z\) \(=\) \(0,\) \(32y\) \(=\) \(x^2z + xz^2 - 25z^3\) \(0\) \(2\)

2-torsion field: 4.2.563.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 0.055529 \)
Real period: \( 9.013663 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 0.250263 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(4\) \(2\) \(( 1 + T )( 1 + T + 3 T^{2} )\)
\(563\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 28 T + 563 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.30.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);