Properties

Label 163018.a.326036.1
Conductor $163018$
Discriminant $326036$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -3x^4 + x^3 + 3x^2 - 2x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -3x^4z^2 + x^3z^3 + 3x^2z^4 - 2xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 12x^4 + 6x^3 + 12x^2 - 8x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -2, 3, 1, -3]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -2, 3, 1, -3], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -8, 12, 6, -12, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(163018\) \(=\) \( 2 \cdot 81509 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(326036\) \(=\) \( 2^{2} \cdot 81509 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1140\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 19 \)
\( I_4 \)  \(=\) \(31257\) \(=\)  \( 3^{2} \cdot 23 \cdot 151 \)
\( I_6 \)  \(=\) \(10978749\) \(=\)  \( 3^{2} \cdot 1219861 \)
\( I_{10} \)  \(=\) \(41732608\) \(=\)  \( 2^{9} \cdot 81509 \)
\( J_2 \)  \(=\) \(285\) \(=\)  \( 3 \cdot 5 \cdot 19 \)
\( J_4 \)  \(=\) \(2082\) \(=\)  \( 2 \cdot 3 \cdot 347 \)
\( J_6 \)  \(=\) \(4208\) \(=\)  \( 2^{4} \cdot 263 \)
\( J_8 \)  \(=\) \(-783861\) \(=\)  \( - 3 \cdot 13 \cdot 101 \cdot 199 \)
\( J_{10} \)  \(=\) \(326036\) \(=\)  \( 2^{2} \cdot 81509 \)
\( g_1 \)  \(=\) \(1880287678125/326036\)
\( g_2 \)  \(=\) \(24098239125/163018\)
\( g_3 \)  \(=\) \(85448700/81509\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -4 : 2)\) \((1 : -5 : 2)\) \((2 : -8 : 3)\) \((3 : -13 : 1)\) \((3 : -15 : 1)\)
\((2 : -27 : 3)\) \((5 : -81 : 6)\) \((-4 : 139 : 5)\) \((-4 : -200 : 5)\) \((5 : -260 : 6)\) \((-39 : 27859 : 11)\)
\((-39 : 30129 : 11)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -4 : 2)\) \((1 : -5 : 2)\) \((2 : -8 : 3)\) \((3 : -13 : 1)\) \((3 : -15 : 1)\)
\((2 : -27 : 3)\) \((5 : -81 : 6)\) \((-4 : 139 : 5)\) \((-4 : -200 : 5)\) \((5 : -260 : 6)\) \((-39 : 27859 : 11)\)
\((-39 : 30129 : 11)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 2 : 1)\) \((1 : -1 : 2)\) \((1 : 1 : 2)\) \((3 : -2 : 1)\) \((3 : 2 : 1)\) \((2 : -19 : 3)\)
\((2 : 19 : 3)\) \((5 : -179 : 6)\) \((5 : 179 : 6)\) \((-4 : -339 : 5)\) \((-4 : 339 : 5)\) \((-39 : -2270 : 11)\)
\((-39 : 2270 : 11)\)

magma: [C![-39,27859,11],C![-39,30129,11],C![-4,-200,5],C![-4,139,5],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-5,2],C![1,-4,2],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-27,3],C![2,-8,3],C![3,-15,1],C![3,-13,1],C![5,-260,6],C![5,-81,6]]; // minimal model
 
magma: [C![-39,-2270,11],C![-39,2270,11],C![-4,-339,5],C![-4,339,5],C![-1,-2,1],C![-1,2,1],C![0,-1,1],C![0,1,1],C![1,-1,2],C![1,1,2],C![1,-1,0],C![1,0,1],C![1,1,0],C![2,-19,3],C![2,19,3],C![3,-2,1],C![3,2,1],C![5,-179,6],C![5,179,6]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((1 : -4 : 2) - (1 : -1 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0.749897\) \(\infty\)
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.247979\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.232949\) \(\infty\)
Generator $D_0$ Height Order
\((1 : -4 : 2) - (1 : -1 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(-z^3\) \(0.749897\) \(\infty\)
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.247979\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.232949\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(z (2x - z)\) \(=\) \(0,\) \(2y\) \(=\) \(x^3 - z^3\) \(0.749897\) \(\infty\)
\((0 : -1 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.247979\) \(\infty\)
\((1 : 0 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + z^3\) \(0.232949\) \(\infty\)

2-torsion field: 5.5.81509.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.035611 \)
Real period: \( 16.07644 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.145004 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(81509\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 357 T + 81509 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);