Properties

Label 15380.a.307600.1
Conductor $15380$
Discriminant $307600$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = x^6 - 2x^5 + 2x^4 - 2x^3 + x$ (homogenize, simplify)
$y^2 + xz^2y = x^6 - 2x^5z + 2x^4z^2 - 2x^3z^3 + xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 8x^5 + 8x^4 - 8x^3 + x^2 + 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -2, 2, -2, 1]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -2, 2, -2, 1], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, 4, 1, -8, 8, -8, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(15380\) \(=\) \( 2^{2} \cdot 5 \cdot 769 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(307600\) \(=\) \( 2^{4} \cdot 5^{2} \cdot 769 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(256\) \(=\)  \( 2^{8} \)
\( I_4 \)  \(=\) \(2764\) \(=\)  \( 2^{2} \cdot 691 \)
\( I_6 \)  \(=\) \(393028\) \(=\)  \( 2^{2} \cdot 98257 \)
\( I_{10} \)  \(=\) \(-1230400\) \(=\)  \( - 2^{6} \cdot 5^{2} \cdot 769 \)
\( J_2 \)  \(=\) \(128\) \(=\)  \( 2^{7} \)
\( J_4 \)  \(=\) \(222\) \(=\)  \( 2 \cdot 3 \cdot 37 \)
\( J_6 \)  \(=\) \(-22436\) \(=\)  \( - 2^{2} \cdot 71 \cdot 79 \)
\( J_8 \)  \(=\) \(-730273\) \(=\)  \( - 23 \cdot 31751 \)
\( J_{10} \)  \(=\) \(-307600\) \(=\)  \( - 2^{4} \cdot 5^{2} \cdot 769 \)
\( g_1 \)  \(=\) \(-2147483648/19225\)
\( g_2 \)  \(=\) \(-29097984/19225\)
\( g_3 \)  \(=\) \(22974464/19225\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 1 : 2)\) \((-1 : 3 : 1)\) \((-1 : 3 : 2)\) \((1 : 3 : 2)\) \((4 : 2 : 3)\) \((1 : -7 : 2)\)
\((4 : -38 : 3)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((1 : 0 : 1)\) \((1 : -1 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 1 : 2)\) \((-1 : 3 : 1)\) \((-1 : 3 : 2)\) \((1 : 3 : 2)\) \((4 : 2 : 3)\) \((1 : -7 : 2)\)
\((4 : -38 : 3)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : 0 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((-1 : -2 : 2)\)
\((-1 : 2 : 2)\) \((-1 : -5 : 1)\) \((-1 : 5 : 1)\) \((1 : -10 : 2)\) \((1 : 10 : 2)\) \((4 : -40 : 3)\)
\((4 : 40 : 3)\)

magma: [C![-1,-2,1],C![-1,1,2],C![-1,3,1],C![-1,3,2],C![0,0,1],C![1,-7,2],C![1,-1,0],C![1,-1,1],C![1,0,1],C![1,1,0],C![1,3,2],C![4,-38,3],C![4,2,3]]; // minimal model
 
magma: [C![-1,-5,1],C![-1,-2,2],C![-1,5,1],C![-1,2,2],C![0,0,1],C![1,-10,2],C![1,-2,0],C![1,-1,1],C![1,1,1],C![1,2,0],C![1,10,2],C![4,-40,3],C![4,40,3]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.294277\) \(\infty\)
\((1 : 0 : 1) + (1 : 3 : 2) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-3xz^2 + 3z^3\) \(0.023602\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.294277\) \(\infty\)
\((1 : 0 : 1) + (1 : 3 : 2) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-3xz^2 + 3z^3\) \(0.023602\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (1 : -1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.294277\) \(\infty\)
\(D_0 - (1 : -2 : 0) - (1 : 2 : 0)\) \((x - z) (2x - z)\) \(=\) \(0,\) \(4y\) \(=\) \(-5xz^2 + 6z^3\) \(0.023602\) \(\infty\)

2-torsion field: 5.1.49216.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.006830 \)
Real period: \( 15.23203 \)
Tamagawa product: \( 6 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.624298 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + T + 2 T^{2}\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 4 T + 5 T^{2} )\)
\(769\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 15 T + 769 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);