Learn more

Refine search


Results (16 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
15360.a.15360.1 15360.a \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[432,312,44172,60]$ $[864,30272,1378560,68670464,15360]$ $[\frac{156728328192}{5},\frac{6355666944}{5},66998016]$ $y^2 = x^5 + 7x^4 + 14x^3 + 7x^2 + x$
15360.b.15360.1 15360.b \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[432,312,44172,60]$ $[864,30272,1378560,68670464,15360]$ $[\frac{156728328192}{5},\frac{6355666944}{5},66998016]$ $y^2 = x^5 - 7x^4 + 14x^3 - 7x^2 + x$
15360.c.61440.1 15360.c \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[34,-68,-48,240]$ $[68,374,-2356,-75021,61440]$ $[\frac{1419857}{60},\frac{918731}{480},-\frac{170221}{960}]$ $y^2 = x^5 - x^3 - 2x^2 - x$
15360.d.61440.1 15360.d \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[66,-12,744,240]$ $[132,758,-1140,-181261,61440]$ $[\frac{13045131}{20},\frac{4540041}{160},-\frac{20691}{64}]$ $y^2 = x^5 + x^4 - x^3 - 3x^2 - 3x - 1$
15360.d.983040.1 15360.d \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[11640,897,3480045,120]$ $[46560,90316832,233570058240,679472942284544,983040]$ $[222583859461440000,9273345076342800,515076721401600]$ $y^2 = 2x^6 + 15x^4 + 37x^2 + 30$
15360.d.983040.2 15360.d \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[11640,897,3480045,120]$ $[46560,90316832,233570058240,679472942284544,983040]$ $[222583859461440000,9273345076342800,515076721401600]$ $y^2 = 2x^6 - 15x^4 + 37x^2 - 30$
15360.e.61440.1 15360.e \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[34,-68,-48,240]$ $[68,374,-2356,-75021,61440]$ $[\frac{1419857}{60},\frac{918731}{480},-\frac{170221}{960}]$ $y^2 = x^5 - x^3 + 2x^2 - x$
15360.e.245760.1 15360.e \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[2812,3283,3020202,30]$ $[11248,5236544,3231738880,2232301464576,245760]$ $[\frac{10988960165359552}{15},\frac{454831715777072}{15},\frac{4991107625456}{3}]$ $y^2 + x^3y = 2x^5 - 18x^3 + 11x^2 + 28x - 24$
15360.f.61440.1 15360.f \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[66,-12,744,240]$ $[132,758,-1140,-181261,61440]$ $[\frac{13045131}{20},\frac{4540041}{160},-\frac{20691}{64}]$ $y^2 = x^5 - x^4 - x^3 + 3x^2 - 3x + 1$
15360.f.983040.2 15360.f \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[11640,897,3480045,120]$ $[46560,90316832,233570058240,679472942284544,983040]$ $[222583859461440000,9273345076342800,515076721401600]$ $y^2 = -2x^6 - 15x^4 - 37x^2 - 30$
15360.f.983040.1 15360.f \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[11640,897,3480045,120]$ $[46560,90316832,233570058240,679472942284544,983040]$ $[222583859461440000,9273345076342800,515076721401600]$ $y^2 = 30x^6 - 37x^4 + 15x^2 - 2$
15360.g.61440.1 15360.g \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[278,640,60792,240]$ $[556,11174,229156,638115,61440]$ $[\frac{51888844699}{60},\frac{15004553353}{480},\frac{1106880769}{960}]$ $y^2 = x^5 + 3x^4 - x^3 - 4x^2 + 2x$
15360.h.184320.1 15360.h \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[390,852,105720,720]$ $[780,23078,838980,30452579,184320]$ $[\frac{6265569375}{4},\frac{1901338725}{32},\frac{177234525}{64}]$ $y^2 = 2x^5 - x^4 - 5x^3 + 3x + 1$
15360.i.184320.1 15360.i \( 2^{10} \cdot 3 \cdot 5 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[390,852,105720,720]$ $[780,23078,838980,30452579,184320]$ $[\frac{6265569375}{4},\frac{1901338725}{32},\frac{177234525}{64}]$ $y^2 = 2x^5 + x^4 - 5x^3 + 3x - 1$
15360.j.491520.1 15360.j \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[5856,573,1118244,60]$ $[23424,22855712,29727006720,43485458595584,491520]$ $[\frac{71735496284307456}{5},\frac{2988179922511872}{5},33184257601536]$ $y^2 + x^3y = 6x^4 + 47x^2 + 120$
15360.j.491520.2 15360.j \( 2^{10} \cdot 3 \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathsf{CM} \times \Q\) $[5856,573,1118244,60]$ $[23424,22855712,29727006720,43485458595584,491520]$ $[\frac{71735496284307456}{5},\frac{2988179922511872}{5},33184257601536]$ $y^2 + x^3y = -6x^4 + 47x^2 - 120$
  displayed columns for results