Properties

Label 150456.a.902736.1
Conductor $150456$
Discriminant $-902736$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^6 - 2x^5 + x$ (homogenize, simplify)
$y^2 + z^3y = x^6 - 2x^5z + xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 8x^5 + 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, 0, 0, -2, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, 0, 0, -2, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, 4, 0, 0, 0, -8, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(150456\) \(=\) \( 2^{3} \cdot 3 \cdot 6269 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-902736\) \(=\) \( - 2^{4} \cdot 3^{2} \cdot 6269 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(280\) \(=\)  \( 2^{3} \cdot 5 \cdot 7 \)
\( I_4 \)  \(=\) \(205\) \(=\)  \( 5 \cdot 41 \)
\( I_6 \)  \(=\) \(72365\) \(=\)  \( 5 \cdot 41 \cdot 353 \)
\( I_{10} \)  \(=\) \(112842\) \(=\)  \( 2 \cdot 3^{2} \cdot 6269 \)
\( J_2 \)  \(=\) \(280\) \(=\)  \( 2^{3} \cdot 5 \cdot 7 \)
\( J_4 \)  \(=\) \(3130\) \(=\)  \( 2 \cdot 5 \cdot 313 \)
\( J_6 \)  \(=\) \(-2880\) \(=\)  \( - 2^{6} \cdot 3^{2} \cdot 5 \)
\( J_8 \)  \(=\) \(-2650825\) \(=\)  \( - 5^{2} \cdot 106033 \)
\( J_{10} \)  \(=\) \(902736\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 6269 \)
\( g_1 \)  \(=\) \(107564800000/56421\)
\( g_2 \)  \(=\) \(4294360000/56421\)
\( g_3 \)  \(=\) \(-1568000/6269\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((-1 : -2 : 1)\) \((2 : 1 : 1)\) \((2 : -2 : 1)\) \((1 : 7 : 3)\) \((-3 : -7 : 4)\)
\((-1 : -29 : 4)\) \((1 : -34 : 3)\) \((-1 : -35 : 4)\) \((2 : 37 : 5)\) \((-3 : -57 : 4)\) \((2 : -162 : 5)\)
\((-4 : -5069 : 33)\) \((-4 : -30868 : 33)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((-1 : -2 : 1)\) \((2 : 1 : 1)\) \((2 : -2 : 1)\) \((1 : 7 : 3)\) \((-3 : -7 : 4)\)
\((-1 : -29 : 4)\) \((1 : -34 : 3)\) \((-1 : -35 : 4)\) \((2 : 37 : 5)\) \((-3 : -57 : 4)\) \((2 : -162 : 5)\)
\((-4 : -5069 : 33)\) \((-4 : -30868 : 33)\)
Known points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : -3 : 1)\) \((-1 : 3 : 1)\) \((2 : -3 : 1)\) \((2 : 3 : 1)\) \((-1 : -6 : 4)\) \((-1 : 6 : 4)\)
\((1 : -41 : 3)\) \((1 : 41 : 3)\) \((-3 : -50 : 4)\) \((-3 : 50 : 4)\) \((2 : -199 : 5)\) \((2 : 199 : 5)\)
\((-4 : -25799 : 33)\) \((-4 : 25799 : 33)\)

magma: [C![-4,-30868,33],C![-4,-5069,33],C![-3,-57,4],C![-3,-7,4],C![-1,-35,4],C![-1,-29,4],C![-1,-2,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-34,3],C![1,-1,0],C![1,-1,1],C![1,0,1],C![1,1,0],C![1,7,3],C![2,-162,5],C![2,-2,1],C![2,1,1],C![2,37,5]]; // minimal model
 
magma: [C![-4,-25799,33],C![-4,25799,33],C![-3,-50,4],C![-3,50,4],C![-1,-6,4],C![-1,6,4],C![-1,-3,1],C![-1,3,1],C![0,-1,1],C![0,1,1],C![1,-41,3],C![1,-2,0],C![1,-1,1],C![1,1,1],C![1,2,0],C![1,41,3],C![2,-199,5],C![2,-3,1],C![2,3,1],C![2,199,5]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.417859\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.364706\) \(\infty\)
\((-1 : -2 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.157102\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.417859\) \(\infty\)
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.364706\) \(\infty\)
\((-1 : -2 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.157102\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) - (1 : -2 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 + z^3\) \(0.417859\) \(\infty\)
\((0 : -1 : 1) - (1 : -2 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 - z^3\) \(0.364706\) \(\infty\)
\((-1 : -3 : 1) - (1 : -2 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(2x^3 - z^3\) \(0.157102\) \(\infty\)

2-torsion field: 6.4.1604864.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.021395 \)
Real period: \( 13.30252 \)
Tamagawa product: \( 4 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.138450 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(3\) \(4\) \(2\) \(1 + 2 T + 2 T^{2}\)
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(6269\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 10 T + 6269 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);