Properties

Label 149688.a.299376.1
Conductor $149688$
Discriminant $-299376$
Mordell-Weil group \(\Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2)y = -x^6 + 22x^5 - 216x^4 + 636x^3 + 72x^2 + 2x$ (homogenize, simplify)
$y^2 + (x^3 + x^2z)y = -x^6 + 22x^5z - 216x^4z^2 + 636x^3z^3 + 72x^2z^4 + 2xz^5$ (dehomogenize, simplify)
$y^2 = -3x^6 + 90x^5 - 863x^4 + 2544x^3 + 288x^2 + 8x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 72, 636, -216, 22, -1]), R([0, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 72, 636, -216, 22, -1], R![0, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([0, 8, 288, 2544, -863, 90, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(149688\) \(=\) \( 2^{3} \cdot 3^{5} \cdot 7 \cdot 11 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-299376\) \(=\) \( - 2^{4} \cdot 3^{5} \cdot 7 \cdot 11 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(10709280\) \(=\)  \( 2^{5} \cdot 3^{3} \cdot 5 \cdot 37 \cdot 67 \)
\( I_4 \)  \(=\) \(255376080\) \(=\)  \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 354689 \)
\( I_6 \)  \(=\) \(910184353854876\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 3223499 \cdot 7843309 \)
\( I_{10} \)  \(=\) \(-1197504\) \(=\)  \( - 2^{6} \cdot 3^{5} \cdot 7 \cdot 11 \)
\( J_2 \)  \(=\) \(5354640\) \(=\)  \( 2^{4} \cdot 3^{3} \cdot 5 \cdot 37 \cdot 67 \)
\( J_4 \)  \(=\) \(1194631167720\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 34963 \cdot 284737 \)
\( J_6 \)  \(=\) \(355353717454751236\) \(=\)  \( 2^{2} \cdot 13 \cdot 1637 \cdot 4174542049889 \)
\( J_8 \)  \(=\) \(118911900685964597084160\) \(=\)  \( 2^{14} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 233 \cdot 1103 \cdot 89652704329 \)
\( J_{10} \)  \(=\) \(-299376\) \(=\)  \( - 2^{4} \cdot 3^{5} \cdot 7 \cdot 11 \)
\( g_1 \)  \(=\) \(-1132205169121716742666444800000/77\)
\( g_2 \)  \(=\) \(-47173534667132877160047360000/77\)
\( g_3 \)  \(=\) \(-2620566365698612668618091200/77\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((0 : 0 : 1)\)
All points: \((0 : 0 : 1)\)
All points: \((0 : 0 : 1)\)

magma: [C![0,0,1]]; // minimal model
 
magma: [C![0,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 18xz - z^2\) \(=\) \(0,\) \(6y\) \(=\) \(-127xz^2 - 7z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 18xz - z^2\) \(=\) \(0,\) \(6y\) \(=\) \(-127xz^2 - 7z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(3x^2 - 18xz - z^2\) \(=\) \(0,\) \(6y\) \(=\) \(x^3 + x^2z - 254xz^2 - 14z^3\) \(0\) \(2\)

2-torsion field: 6.2.816903549.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 0.439731 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 3.517849 \)
Analytic order of Ш: \( 16 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(3\) \(4\) \(2\) \(1 - T\)
\(3\) \(5\) \(5\) \(1\) \(1 - T\)
\(7\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 7 T^{2} )\)
\(11\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 4 T + 11 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.60.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);