Properties

Label 14955.a.224325.1
Conductor $14955$
Discriminant $224325$
Mordell-Weil group \(\Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = 15x^5 - 124x^4 + 77x^3 - 16x^2 + x$ (homogenize, simplify)
$y^2 + xz^2y = 15x^5z - 124x^4z^2 + 77x^3z^3 - 16x^2z^4 + xz^5$ (dehomogenize, simplify)
$y^2 = 60x^5 - 496x^4 + 308x^3 - 63x^2 + 4x$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, -16, 77, -124, 15]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, -16, 77, -124, 15], R![0, 1]);
 
sage: X = HyperellipticCurve(R([0, 4, -63, 308, -496, 60]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(14955\) \(=\) \( 3 \cdot 5 \cdot 997 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(224325\) \(=\) \( 3^{2} \cdot 5^{2} \cdot 997 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(19704\) \(=\)  \( 2^{3} \cdot 3 \cdot 821 \)
\( I_4 \)  \(=\) \(14593692\) \(=\)  \( 2^{2} \cdot 3 \cdot 101 \cdot 12041 \)
\( I_6 \)  \(=\) \(77284606287\) \(=\)  \( 3 \cdot 7^{2} \cdot 17^{2} \cdot 1819189 \)
\( I_{10} \)  \(=\) \(897300\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 997 \)
\( J_2 \)  \(=\) \(9852\) \(=\)  \( 2^{2} \cdot 3 \cdot 821 \)
\( J_4 \)  \(=\) \(1611964\) \(=\)  \( 2^{2} \cdot 402991 \)
\( J_6 \)  \(=\) \(282717241\) \(=\)  \( 31 \cdot 1223 \cdot 7457 \)
\( J_8 \)  \(=\) \(46725580259\) \(=\)  \( 41 \cdot 61 \cdot 1013 \cdot 18443 \)
\( J_{10} \)  \(=\) \(224325\) \(=\)  \( 3^{2} \cdot 5^{2} \cdot 997 \)
\( g_1 \)  \(=\) \(10312869125139176448/24925\)
\( g_2 \)  \(=\) \(171271869614631168/24925\)
\( g_3 \)  \(=\) \(3049008189454096/24925\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (4 : -450 : 15)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (4 : -450 : 15)\)
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (4 : 0 : 15)\)

magma: [C![0,0,1],C![1,0,0],C![4,-450,15]]; // minimal model
 
magma: [C![0,0,1],C![1,0,0],C![4,0,15]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((4 : -450 : 15) - (1 : 0 : 0)\) \(15x - 4z\) \(=\) \(0,\) \(15y\) \(=\) \(-2z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((4 : -450 : 15) - (1 : 0 : 0)\) \(15x - 4z\) \(=\) \(0,\) \(15y\) \(=\) \(-2z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(15x - 4z\) \(=\) \(0,\) \(15y\) \(=\) \(xz^2 - 4z^3\) \(0\) \(2\)
\((0 : 0 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(2\)

2-torsion field: 3.3.3988.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(4\)
Regulator: \( 1 \)
Real period: \( 1.806718 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.806718 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 - 3 T + 3 T^{2} )\)
\(5\) \(1\) \(2\) \(2\) \(( 1 - T )( 1 + 2 T + 5 T^{2} )\)
\(997\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 62 T + 997 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.3 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);