Properties

Label 148158.a.888948.1
Conductor $148158$
Discriminant $-888948$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^5 - x^4 - 6x^3 + x^2 + 5x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^5z - x^4z^2 - 6x^3z^3 + x^2z^4 + 5xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 4x^4 - 22x^3 + 4x^2 + 20x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 5, 1, -6, -1, 1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 5, 1, -6, -1, 1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 20, 4, -22, -4, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(148158\) \(=\) \( 2 \cdot 3^{2} \cdot 8231 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-888948\) \(=\) \( - 2^{2} \cdot 3^{3} \cdot 8231 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3060\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
\( I_4 \)  \(=\) \(223785\) \(=\)  \( 3^{2} \cdot 5 \cdot 4973 \)
\( I_6 \)  \(=\) \(197168373\) \(=\)  \( 3^{2} \cdot 43 \cdot 499 \cdot 1021 \)
\( I_{10} \)  \(=\) \(-113785344\) \(=\)  \( - 2^{9} \cdot 3^{3} \cdot 8231 \)
\( J_2 \)  \(=\) \(765\) \(=\)  \( 3^{2} \cdot 5 \cdot 17 \)
\( J_4 \)  \(=\) \(15060\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 251 \)
\( J_6 \)  \(=\) \(279316\) \(=\)  \( 2^{2} \cdot 69829 \)
\( J_8 \)  \(=\) \(-3281715\) \(=\)  \( - 3^{5} \cdot 5 \cdot 37 \cdot 73 \)
\( J_{10} \)  \(=\) \(-888948\) \(=\)  \( - 2^{2} \cdot 3^{3} \cdot 8231 \)
\( g_1 \)  \(=\) \(-9703835184375/32924\)
\( g_2 \)  \(=\) \(-62428876875/8231\)
\( g_3 \)  \(=\) \(-1513543575/8231\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-2 : 1 : 1)\) \((1 : -2 : 1)\) \((2 : -3 : 1)\) \((-2 : 6 : 1)\) \((2 : -6 : 1)\) \((-3 : -6 : 2)\)
\((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((-3 : 25 : 2)\) \((-5 : 42 : 2)\) \((-5 : 75 : 2)\) \((19 : 335 : 6)\)
\((19 : -7410 : 6)\) \((53 : 13476840 : 285)\) \((53 : -36774842 : 285)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\)
\((-2 : 1 : 1)\) \((1 : -2 : 1)\) \((2 : -3 : 1)\) \((-2 : 6 : 1)\) \((2 : -6 : 1)\) \((-3 : -6 : 2)\)
\((-3 : 12 : 1)\) \((-3 : 14 : 1)\) \((-3 : 25 : 2)\) \((-5 : 42 : 2)\) \((-5 : 75 : 2)\) \((19 : 335 : 6)\)
\((19 : -7410 : 6)\) \((53 : 13476840 : 285)\) \((53 : -36774842 : 285)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -2 : 1)\)
\((1 : 2 : 1)\) \((-3 : -2 : 1)\) \((-3 : 2 : 1)\) \((2 : -3 : 1)\) \((2 : 3 : 1)\) \((-2 : -5 : 1)\)
\((-2 : 5 : 1)\) \((-3 : -31 : 2)\) \((-3 : 31 : 2)\) \((-5 : -33 : 2)\) \((-5 : 33 : 2)\) \((19 : -7745 : 6)\)
\((19 : 7745 : 6)\) \((53 : -50251682 : 285)\) \((53 : 50251682 : 285)\)

magma: [C![-5,42,2],C![-5,75,2],C![-3,-6,2],C![-3,12,1],C![-3,14,1],C![-3,25,2],C![-2,1,1],C![-2,6,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-6,1],C![2,-3,1],C![19,-7410,6],C![19,335,6],C![53,-36774842,285],C![53,13476840,285]]; // minimal model
 
magma: [C![-5,-33,2],C![-5,33,2],C![-3,-31,2],C![-3,-2,1],C![-3,2,1],C![-3,31,2],C![-2,-5,1],C![-2,5,1],C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![2,-3,1],C![2,3,1],C![19,-7745,6],C![19,7745,6],C![53,-50251682,285],C![53,50251682,285]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.741682\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 3z^3\) \(0.523152\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.048670\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.741682\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 + 3z^3\) \(0.523152\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.048670\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : -1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.741682\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 + 2xz - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 6xz^2 + 7z^3\) \(0.523152\) \(\infty\)
\((-1 : 0 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.048670\) \(\infty\)

2-torsion field: 5.3.395088.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.016702 \)
Real period: \( 16.48492 \)
Tamagawa product: \( 4 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.101356 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(3\) \(2\) \(3\) \(2\) \(1 + 3 T + 3 T^{2}\)
\(8231\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 120 T + 8231 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);