Properties

Label 143849.a.143849.1
Conductor $143849$
Discriminant $143849$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = -x^5 + 3x^4 - 9x^2 + x + 6$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = -x^5z + 3x^4z^2 - 9x^2z^4 + xz^5 + 6z^6$ (dehomogenize, simplify)
$y^2 = -4x^5 + 13x^4 + 2x^3 - 33x^2 + 6x + 25$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([6, 1, -9, 0, 3, -1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![6, 1, -9, 0, 3, -1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([25, 6, -33, 2, 13, -4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(143849\) \(=\) \( 19 \cdot 67 \cdot 113 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(143849\) \(=\) \( 19 \cdot 67 \cdot 113 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2964\) \(=\)  \( 2^{2} \cdot 3 \cdot 13 \cdot 19 \)
\( I_4 \)  \(=\) \(-11895\) \(=\)  \( - 3 \cdot 5 \cdot 13 \cdot 61 \)
\( I_6 \)  \(=\) \(-21353019\) \(=\)  \( - 3 \cdot 29 \cdot 245437 \)
\( I_{10} \)  \(=\) \(18412672\) \(=\)  \( 2^{7} \cdot 19 \cdot 67 \cdot 113 \)
\( J_2 \)  \(=\) \(741\) \(=\)  \( 3 \cdot 13 \cdot 19 \)
\( J_4 \)  \(=\) \(23374\) \(=\)  \( 2 \cdot 13 \cdot 29 \cdot 31 \)
\( J_6 \)  \(=\) \(1136380\) \(=\)  \( 2^{2} \cdot 5 \cdot 7 \cdot 8117 \)
\( J_8 \)  \(=\) \(73928426\) \(=\)  \( 2 \cdot 11 \cdot 13 \cdot 258491 \)
\( J_{10} \)  \(=\) \(143849\) \(=\)  \( 19 \cdot 67 \cdot 113 \)
\( g_1 \)  \(=\) \(11758107837879/7571\)
\( g_2 \)  \(=\) \(500534552466/7571\)
\( g_3 \)  \(=\) \(32840245620/7571\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((-1 : 0 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\) \((0 : 2 : 1)\) \((0 : -3 : 1)\)
\((1 : -3 : 1)\) \((2 : -3 : 1)\) \((2 : -4 : 1)\) \((-3 : 17 : 1)\) \((-3 : -24 : 1)\) \((-12 : 494 : 1)\)
\((-12 : -627 : 1)\) \((12 : 214781 : 49)\) \((12 : -368298 : 49)\)
Known points
\((1 : 0 : 0)\) \((-1 : 0 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\) \((0 : 2 : 1)\) \((0 : -3 : 1)\)
\((1 : -3 : 1)\) \((2 : -3 : 1)\) \((2 : -4 : 1)\) \((-3 : 17 : 1)\) \((-3 : -24 : 1)\) \((-12 : 494 : 1)\)
\((-12 : -627 : 1)\) \((12 : 214781 : 49)\) \((12 : -368298 : 49)\)
Known points
\((1 : 0 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((2 : -1 : 1)\) \((2 : 1 : 1)\) \((1 : -3 : 1)\)
\((1 : 3 : 1)\) \((0 : -5 : 1)\) \((0 : 5 : 1)\) \((-3 : -41 : 1)\) \((-3 : 41 : 1)\) \((-12 : -1121 : 1)\)
\((-12 : 1121 : 1)\) \((12 : -583079 : 49)\) \((12 : 583079 : 49)\)

magma: [C![-12,-627,1],C![-12,494,1],C![-3,-24,1],C![-3,17,1],C![-1,-1,1],C![-1,0,1],C![0,-3,1],C![0,2,1],C![1,-3,1],C![1,0,0],C![1,0,1],C![2,-4,1],C![2,-3,1],C![12,-368298,49],C![12,214781,49]]; // minimal model
 
magma: [C![-12,-1121,1],C![-12,1121,1],C![-3,-41,1],C![-3,41,1],C![-1,-1,1],C![-1,1,1],C![0,-5,1],C![0,5,1],C![1,-3,1],C![1,0,0],C![1,3,1],C![2,-1,1],C![2,1,1],C![12,-583079,49],C![12,583079,49]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.754034\) \(\infty\)
\((2 : -3 : 1) - (1 : 0 : 0)\) \(x - 2z\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0.561566\) \(\infty\)
\((-1 : 0 : 1) + (2 : -3 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.210027\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2\) \(0.754034\) \(\infty\)
\((2 : -3 : 1) - (1 : 0 : 0)\) \(x - 2z\) \(=\) \(0,\) \(y\) \(=\) \(-3z^3\) \(0.561566\) \(\infty\)
\((-1 : 0 : 1) + (2 : -3 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0.210027\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 - xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - 3xz^2 + z^3\) \(0.754034\) \(\infty\)
\((2 : 1 : 1) - (1 : 0 : 0)\) \(x - 2z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - 5z^3\) \(0.561566\) \(\infty\)
\((-1 : 1 : 1) + (2 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - 2z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - xz^2 - z^3\) \(0.210027\) \(\infty\)

2-torsion field: 5.1.2301584.2

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.078082 \)
Real period: \( 15.25439 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.191100 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(19\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 2 T + 19 T^{2} )\)
\(67\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 67 T^{2} )\)
\(113\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 113 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);