Properties

Label 143313.a.429939.1
Conductor $143313$
Discriminant $-429939$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = x^5 - 5x^3 - 5x^2 + 5x + 6$ (homogenize, simplify)
$y^2 + x^3y = x^5z - 5x^3z^3 - 5x^2z^4 + 5xz^5 + 6z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 20x^3 - 20x^2 + 20x + 24$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([6, 5, -5, -5, 0, 1]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![6, 5, -5, -5, 0, 1], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([24, 20, -20, -20, 0, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(143313\) \(=\) \( 3 \cdot 23 \cdot 31 \cdot 67 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-429939\) \(=\) \( - 3^{2} \cdot 23 \cdot 31 \cdot 67 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(40\) \(=\)  \( 2^{3} \cdot 5 \)
\( I_4 \)  \(=\) \(-6080\) \(=\)  \( - 2^{6} \cdot 5 \cdot 19 \)
\( I_6 \)  \(=\) \(642680\) \(=\)  \( 2^{3} \cdot 5 \cdot 16067 \)
\( I_{10} \)  \(=\) \(1719756\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 23 \cdot 31 \cdot 67 \)
\( J_2 \)  \(=\) \(20\) \(=\)  \( 2^{2} \cdot 5 \)
\( J_4 \)  \(=\) \(1030\) \(=\)  \( 2 \cdot 5 \cdot 103 \)
\( J_6 \)  \(=\) \(-77020\) \(=\)  \( - 2^{2} \cdot 5 \cdot 3851 \)
\( J_8 \)  \(=\) \(-650325\) \(=\)  \( - 3 \cdot 5^{2} \cdot 13 \cdot 23 \cdot 29 \)
\( J_{10} \)  \(=\) \(429939\) \(=\)  \( 3^{2} \cdot 23 \cdot 31 \cdot 67 \)
\( g_1 \)  \(=\) \(3200000/429939\)
\( g_2 \)  \(=\) \(8240000/429939\)
\( g_3 \)  \(=\) \(-30808000/429939\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : 1 : 1)\) \((1 : -2 : 1)\)
\((2 : -2 : 1)\) \((-2 : 4 : 1)\) \((2 : -6 : 1)\) \((-3 : 9 : 1)\) \((-1 : -13 : 2)\) \((-1 : 14 : 2)\)
\((-3 : 18 : 1)\) \((-5 : 47 : 2)\) \((-5 : 78 : 2)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((-1 : 1 : 1)\) \((1 : 1 : 1)\) \((1 : -2 : 1)\)
\((2 : -2 : 1)\) \((-2 : 4 : 1)\) \((2 : -6 : 1)\) \((-3 : 9 : 1)\) \((-1 : -13 : 2)\) \((-1 : 14 : 2)\)
\((-3 : 18 : 1)\) \((-5 : 47 : 2)\) \((-5 : 78 : 2)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((-2 : 0 : 1)\) \((1 : -3 : 1)\)
\((1 : 3 : 1)\) \((2 : -4 : 1)\) \((2 : 4 : 1)\) \((-3 : -9 : 1)\) \((-3 : 9 : 1)\) \((-1 : -27 : 2)\)
\((-1 : 27 : 2)\) \((-5 : -31 : 2)\) \((-5 : 31 : 2)\)

magma: [C![-5,47,2],C![-5,78,2],C![-3,9,1],C![-3,18,1],C![-2,4,1],C![-1,-13,2],C![-1,0,1],C![-1,1,1],C![-1,14,2],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,1,1],C![2,-6,1],C![2,-2,1]]; // minimal model
 
magma: [C![-5,-31,2],C![-5,31,2],C![-3,-9,1],C![-3,9,1],C![-2,0,1],C![-1,-27,2],C![-1,-1,1],C![-1,1,1],C![-1,27,2],C![1,-3,1],C![1,-1,0],C![1,1,0],C![1,3,1],C![2,-4,1],C![2,4,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-5 : 47 : 2) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (2x + 5z)\) \(=\) \(0,\) \(4y\) \(=\) \(-9xz^2 + z^3\) \(1.315183\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.535576\) \(\infty\)
\((-2 : 4 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(4z^3\) \(0.064949\) \(\infty\)
Generator $D_0$ Height Order
\((-5 : 47 : 2) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (2x + 5z)\) \(=\) \(0,\) \(4y\) \(=\) \(-9xz^2 + z^3\) \(1.315183\) \(\infty\)
\((-1 : 0 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.535576\) \(\infty\)
\((-2 : 4 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(4z^3\) \(0.064949\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (2x + 5z)\) \(=\) \(0,\) \(4y\) \(=\) \(x^3 - 18xz^2 + 2z^3\) \(1.315183\) \(\infty\)
\((-1 : -1 : 1) - (1 : -1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3\) \(0.535576\) \(\infty\)
\((-2 : 0 : 1) - (1 : -1 : 0)\) \(z (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 8z^3\) \(0.064949\) \(\infty\)

2-torsion field: 5.3.764336.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.043807 \)
Real period: \( 13.78651 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.207900 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 3 T^{2} )\)
\(23\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 9 T + 23 T^{2} )\)
\(31\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 31 T^{2} )\)
\(67\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 3 T + 67 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);