Properties

Label 142884.a.285768.1
Conductor $142884$
Discriminant $285768$
Mordell-Weil group \(\Z/{3}\Z\)
Sato-Tate group $J(E_6)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -2$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^3 - 7$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-7, 0, 0, 2, 0, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(142884\) \(=\) \( 2^{2} \cdot 3^{6} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(285768\) \(=\) \( 2^{3} \cdot 3^{6} \cdot 7^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(284\) \(=\)  \( 2^{2} \cdot 71 \)
\( I_4 \)  \(=\) \(1953\) \(=\)  \( 3^{2} \cdot 7 \cdot 31 \)
\( I_6 \)  \(=\) \(181167\) \(=\)  \( 3 \cdot 7 \cdot 8627 \)
\( I_{10} \)  \(=\) \(150528\) \(=\)  \( 2^{10} \cdot 3 \cdot 7^{2} \)
\( J_2 \)  \(=\) \(213\) \(=\)  \( 3 \cdot 71 \)
\( J_4 \)  \(=\) \(1158\) \(=\)  \( 2 \cdot 3 \cdot 193 \)
\( J_6 \)  \(=\) \(-2236\) \(=\)  \( - 2^{2} \cdot 13 \cdot 43 \)
\( J_8 \)  \(=\) \(-454308\) \(=\)  \( - 2^{2} \cdot 3 \cdot 17^{2} \cdot 131 \)
\( J_{10} \)  \(=\) \(285768\) \(=\)  \( 2^{3} \cdot 3^{6} \cdot 7^{2} \)
\( g_1 \)  \(=\) \(1804229351/1176\)
\( g_2 \)  \(=\) \(69076823/1764\)
\( g_3 \)  \(=\) \(-2817919/7938\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (1 : -1 : 0)\)
All points: \((1 : 0 : 0),\, (1 : -1 : 0)\)
All points: \((1 : -1 : 0),\, (1 : 1 : 0)\)

magma: [C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{3}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(3\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(3\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : -1 : 0)\) \(z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + z^3\) \(0\) \(3\)

2-torsion field: 6.2.18289152.2

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 7.453891 \)
Tamagawa product: \( 3 \)
Torsion order:\( 3 \)
Leading coefficient: \( 2.484630 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(3\) \(3\) \(( 1 - T )( 1 + T )\)
\(3\) \(6\) \(6\) \(1\) \(1\)
\(7\) \(2\) \(2\) \(1\) \(1 - 5 T + 7 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.20.3 no
\(3\) 3.960.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_6)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.0.12252303.1 with defining polynomial:
  \(x^{6} + 7\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -36 b^{5} - 315 b^{2}\)
  \(g_6 = -2646 b^{3} - 14175\)
   Conductor norm: 5184
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 36 b^{5} - 315 b^{2}\)
  \(g_6 = 2646 b^{3} - 14175\)
   Conductor norm: 5184

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} + 155 x^{6} - 168 x^{5} - 15 x^{4} + 230 x^{3} - 84 x^{2} - 48 x + 64\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(\frac{77}{50520} a^{11} - \frac{847}{101040} a^{10} + \frac{1337}{101040} a^{9} + \frac{7}{2105} a^{8} - \frac{1039}{10104} a^{7} + \frac{7217}{25260} a^{6} - \frac{700}{1263} a^{5} + \frac{24283}{33680} a^{4} - \frac{9219}{6736} a^{3} + \frac{73759}{50520} a^{2} + \frac{20363}{25260} a - \frac{811}{6315}\) with minimal polynomial \(x^{2} - x + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_6$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{21}) \) with generator \(-\frac{1}{48} a^{10} + \frac{5}{48} a^{9} - \frac{1}{3} a^{8} + \frac{17}{24} a^{7} - \frac{7}{6} a^{6} + \frac{35}{24} a^{5} - \frac{77}{48} a^{4} + \frac{67}{48} a^{3} + \frac{65}{24} a^{2} - \frac{13}{4} a\) with minimal polynomial \(x^{2} - x - 5\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-7}) \) with generator \(\frac{189}{8420} a^{11} - \frac{2079}{16840} a^{10} + \frac{7109}{16840} a^{9} - \frac{8199}{8420} a^{8} + \frac{2961}{1684} a^{7} - \frac{5208}{2105} a^{6} + \frac{1386}{421} a^{5} - \frac{62307}{16840} a^{4} + \frac{87}{3368} a^{3} + \frac{12159}{4210} a^{2} + \frac{18}{2105} a - \frac{154}{2105}\) with minimal polynomial \(x^{2} - x + 2\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.1323.1 with generator \(\frac{7}{240} a^{10} - \frac{7}{48} a^{9} + \frac{29}{60} a^{8} - \frac{127}{120} a^{7} + \frac{28}{15} a^{6} - \frac{301}{120} a^{5} + \frac{273}{80} a^{4} - \frac{287}{80} a^{3} - \frac{169}{120} a^{2} + \frac{35}{12} a + \frac{1}{15}\) with minimal polynomial \(x^{3} - 7\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.1323.1 with generator \(\frac{1589}{101040} a^{11} - \frac{10213}{101040} a^{10} + \frac{4559}{12630} a^{9} - \frac{44921}{50520} a^{8} + \frac{20839}{12630} a^{7} - \frac{123263}{50520} a^{6} + \frac{106827}{33680} a^{5} - \frac{128401}{33680} a^{4} + \frac{73759}{50520} a^{3} + \frac{72233}{25260} a^{2} - \frac{313}{6315} a - \frac{2413}{2105}\) with minimal polynomial \(x^{3} - 7\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.1323.1 with generator \(-\frac{1589}{101040} a^{11} + \frac{1211}{16840} a^{10} - \frac{21737}{101040} a^{9} + \frac{20503}{50520} a^{8} - \frac{9963}{16840} a^{7} + \frac{9653}{16840} a^{6} - \frac{67039}{101040} a^{5} + \frac{3367}{8420} a^{4} + \frac{214963}{101040} a^{3} - \frac{24439}{16840} a^{2} - \frac{24141}{8420} a + \frac{6818}{6315}\) with minimal polynomial \(x^{3} - 7\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}, \sqrt{-7})\) with generator \(-\frac{1057}{101040} a^{11} + \frac{3433}{50520} a^{10} - \frac{25921}{101040} a^{9} + \frac{33101}{50520} a^{8} - \frac{4327}{3368} a^{7} + \frac{33061}{16840} a^{6} - \frac{53599}{20208} a^{5} + \frac{76097}{25260} a^{4} - \frac{28193}{20208} a^{3} - \frac{34829}{16840} a^{2} + \frac{51121}{25260} a + \frac{2983}{6315}\) with minimal polynomial \(x^{4} - x^{3} - x^{2} - 2 x + 4\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.5250987.1 with generator \(\frac{77}{50520} a^{11} - \frac{1897}{50520} a^{10} + \frac{2009}{12630} a^{9} - \frac{2425}{5052} a^{8} + \frac{6034}{6315} a^{7} - \frac{7987}{5052} a^{6} + \frac{32907}{16840} a^{5} - \frac{9065}{3368} a^{4} + \frac{18683}{8420} a^{3} + \frac{36227}{12630} a^{2} - \frac{13328}{6315} a - \frac{1232}{6315}\) with minimal polynomial \(x^{6} - 3 x^{5} + 6 x^{4} + 7 x^{3} - 15 x^{2} - 24 x + 64\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.2.36756909.1 with generator \(-\frac{277}{50520} a^{11} + \frac{8149}{151560} a^{10} - \frac{3856}{18945} a^{9} + \frac{10528}{18945} a^{8} - \frac{39113}{37890} a^{7} + \frac{39637}{25260} a^{6} - \frac{269651}{151560} a^{5} + \frac{108037}{50520} a^{4} - \frac{36619}{75780} a^{3} - \frac{298483}{75780} a^{2} + \frac{35144}{18945} a + \frac{12454}{18945}\) with minimal polynomial \(x^{6} - 3 x^{5} + 9 x^{4} - 6 x^{3} - 24 x^{2} + 72 x - 48\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.2.36756909.1 with generator \(-\frac{2143}{101040} a^{11} + \frac{32623}{303120} a^{10} - \frac{49771}{151560} a^{9} + \frac{98581}{151560} a^{8} - \frac{69803}{75780} a^{7} + \frac{14747}{16840} a^{6} - \frac{219221}{303120} a^{5} + \frac{43031}{101040} a^{4} + \frac{138029}{37890} a^{3} - \frac{89432}{18945} a^{2} - \frac{94129}{37890} a + \frac{52274}{18945}\) with minimal polynomial \(x^{6} - 3 x^{5} + 9 x^{4} - 6 x^{3} - 24 x^{2} + 72 x - 48\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.2.36756909.1 with generator \(-\frac{1}{360} a^{10} + \frac{1}{72} a^{9} - \frac{1}{45} a^{8} + \frac{1}{180} a^{7} + \frac{1}{10} a^{6} - \frac{47}{180} a^{5} + \frac{61}{120} a^{4} - \frac{217}{360} a^{3} + \frac{367}{180} a^{2} - \frac{16}{9} a - \frac{46}{45}\) with minimal polynomial \(x^{6} - 3 x^{5} + 9 x^{4} - 6 x^{3} - 24 x^{2} + 72 x - 48\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.12252303.1 with generator \(\frac{77}{50520} a^{11} - \frac{847}{101040} a^{10} + \frac{1337}{101040} a^{9} + \frac{7}{2105} a^{8} - \frac{1039}{10104} a^{7} + \frac{7217}{25260} a^{6} - \frac{700}{1263} a^{5} + \frac{24283}{33680} a^{4} - \frac{9219}{6736} a^{3} + \frac{73759}{50520} a^{2} + \frac{45623}{25260} a - \frac{7126}{6315}\) with minimal polynomial \(x^{6} + 7\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.0.12252303.1 with generator \(\frac{77}{101040} a^{11} - \frac{1897}{101040} a^{10} + \frac{2009}{25260} a^{9} - \frac{2425}{10104} a^{8} + \frac{3017}{6315} a^{7} - \frac{7987}{10104} a^{6} + \frac{32907}{33680} a^{5} - \frac{9065}{6736} a^{4} + \frac{18683}{16840} a^{3} + \frac{23597}{25260} a^{2} - \frac{349}{6315} a - \frac{6931}{6315}\) with minimal polynomial \(x^{6} + 7\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.0.12252303.1 with generator \(\frac{77}{101040} a^{11} + \frac{35}{3368} a^{10} - \frac{2233}{33680} a^{9} + \frac{12293}{50520} a^{8} - \frac{9777}{16840} a^{7} + \frac{18123}{16840} a^{6} - \frac{154721}{101040} a^{5} + \frac{8701}{4210} a^{4} - \frac{83461}{33680} a^{3} + \frac{1771}{3368} a^{2} + \frac{15673}{8420} a - \frac{13}{421}\) with minimal polynomial \(x^{6} + 7\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);