Properties

Label 14237.a.14237.1
Conductor $14237$
Discriminant $14237$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = x^5 + x^4 - 3x^3 - x^2$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = x^5z + x^4z^2 - 3x^3z^3 - x^2z^4$ (dehomogenize, simplify)
$y^2 = 4x^5 + 5x^4 - 10x^3 - x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, -3, 1, 1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, -3, 1, 1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -1, -10, 5, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(14237\) \(=\) \( 23 \cdot 619 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(14237\) \(=\) \( 23 \cdot 619 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(500\) \(=\)  \( 2^{2} \cdot 5^{3} \)
\( I_4 \)  \(=\) \(16825\) \(=\)  \( 5^{2} \cdot 673 \)
\( I_6 \)  \(=\) \(1911373\) \(=\)  \( 1911373 \)
\( I_{10} \)  \(=\) \(1822336\) \(=\)  \( 2^{7} \cdot 23 \cdot 619 \)
\( J_2 \)  \(=\) \(125\) \(=\)  \( 5^{3} \)
\( J_4 \)  \(=\) \(-50\) \(=\)  \( - 2 \cdot 5^{2} \)
\( J_6 \)  \(=\) \(2316\) \(=\)  \( 2^{2} \cdot 3 \cdot 193 \)
\( J_8 \)  \(=\) \(71750\) \(=\)  \( 2 \cdot 5^{3} \cdot 7 \cdot 41 \)
\( J_{10} \)  \(=\) \(14237\) \(=\)  \( 23 \cdot 619 \)
\( g_1 \)  \(=\) \(30517578125/14237\)
\( g_2 \)  \(=\) \(-97656250/14237\)
\( g_3 \)  \(=\) \(36187500/14237\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((-2 : 1 : 1)\)
\((-1 : -2 : 1)\) \((1 : -2 : 1)\) \((-2 : -4 : 1)\) \((3 : -58 : 4)\) \((3 : -90 : 4)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\) \((-2 : 1 : 1)\)
\((-1 : -2 : 1)\) \((1 : -2 : 1)\) \((-2 : -4 : 1)\) \((3 : -58 : 4)\) \((3 : -90 : 4)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\) \((-1 : -3 : 1)\)
\((-1 : 3 : 1)\) \((-2 : -5 : 1)\) \((-2 : 5 : 1)\) \((3 : -32 : 4)\) \((3 : 32 : 4)\)

magma: [C![-2,-4,1],C![-2,1,1],C![-1,-2,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,1],C![1,0,0],C![3,-90,4],C![3,-58,4]]; // minimal model
 
magma: [C![-2,-5,1],C![-2,5,1],C![-1,-3,1],C![-1,3,1],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,1,1],C![1,0,0],C![3,-32,4],C![3,32,4]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.214584\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.098276\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.214584\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.098276\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - z^3\) \(0.214584\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - z^3\) \(0.098276\) \(\infty\)

2-torsion field: 5.1.227792.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.020785 \)
Real period: \( 25.00008 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.519642 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(23\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + T + 23 T^{2} )\)
\(619\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 28 T + 619 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);