Properties

Label 1408.b.180224.2
Conductor $1408$
Discriminant $-180224$
Mordell-Weil group \(\Z/{2}\Z \times \Z/{8}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 = 2x^5 - 4x^3 - x^2 + 2x + 1$ (homogenize, simplify)
$y^2 = 2x^5z - 4x^3z^3 - x^2z^4 + 2xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = 2x^5 - 4x^3 - x^2 + 2x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 2, -1, -4, 0, 2]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 2, -1, -4, 0, 2], R![]);
 
sage: X = HyperellipticCurve(R([1, 2, -1, -4, 0, 2]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1408\) \(=\) \( 2^{7} \cdot 11 \)
magma: Conductor(LSeries(C: ExcFactors:=[*<2,Valuation(1408,2),R![1]>*])); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-180224\) \(=\) \( - 2^{14} \cdot 11 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(128\) \(=\)  \( 2^{7} \)
\( I_4 \)  \(=\) \(-20\) \(=\)  \( - 2^{2} \cdot 5 \)
\( I_6 \)  \(=\) \(-2290\) \(=\)  \( - 2 \cdot 5 \cdot 229 \)
\( I_{10} \)  \(=\) \(-22\) \(=\)  \( - 2 \cdot 11 \)
\( J_2 \)  \(=\) \(512\) \(=\)  \( 2^{9} \)
\( J_4 \)  \(=\) \(11136\) \(=\)  \( 2^{7} \cdot 3 \cdot 29 \)
\( J_6 \)  \(=\) \(410624\) \(=\)  \( 2^{10} \cdot 401 \)
\( J_8 \)  \(=\) \(21557248\) \(=\)  \( 2^{12} \cdot 19 \cdot 277 \)
\( J_{10} \)  \(=\) \(-180224\) \(=\)  \( - 2^{14} \cdot 11 \)
\( g_1 \)  \(=\) \(-2147483648/11\)
\( g_2 \)  \(=\) \(-91226112/11\)
\( g_3 \)  \(=\) \(-6569984/11\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : 0 : 1)\)

magma: [C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,0,0],C![1,0,1]];
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{2}\Z \times \Z/{8}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((-1 : 0 : 1) + (0 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0\) \(8\)

2-torsion field: 3.1.44.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(2\)
Regulator: \( 1 \)
Real period: \( 15.31272 \)
Tamagawa product: \( 8 \)
Torsion order:\( 16 \)
Leading coefficient: \( 0.478522 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(7\) \(14\) \(8\) \(1\)
\(11\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 4 T + 11 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).