This is a model for the modular curve $X_0(37)$.
Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 3, -6, 7, -5, 2], R![0, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 3, -6, 7, -5, 2]), R([0, 0, 0, 1]))
$y^2 + x^3y = 2x^5 - 5x^4 + 7x^3 - 6x^2 + 3x - 1$
Invariants
| \( N \) | = | \( 1369 \) | = | \( 37^{2} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
| \( \Delta \) | = | \(50653\) | = | \( 37^{3} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
| \( I_2 \) | = | \(1824\) | = | \( 2^{5} \cdot 3 \cdot 19 \) |
| \( I_4 \) | = | \(179520\) | = | \( 2^{6} \cdot 3 \cdot 5 \cdot 11 \cdot 17 \) |
| \( I_6 \) | = | \(140795904\) | = | \( 2^{13} \cdot 3 \cdot 17 \cdot 337 \) |
| \( I_{10} \) | = | \(207474688\) | = | \( 2^{12} \cdot 37^{3} \) |
| \( J_2 \) | = | \(228\) | = | \( 2^{2} \cdot 3 \cdot 19 \) |
| \( J_4 \) | = | \(296\) | = | \( 2^{3} \cdot 37 \) |
| \( J_6 \) | = | \(-98568\) | = | \( -1 \cdot 2^{3} \cdot 3^{2} \cdot 37^{2} \) |
| \( J_8 \) | = | \(-5640280\) | = | \( -1 \cdot 2^{3} \cdot 5 \cdot 37^{2} \cdot 103 \) |
| \( J_{10} \) | = | \(50653\) | = | \( 37^{3} \) |
| \( g_1 \) | = | \(616132666368/50653\) | ||
| \( g_2 \) | = | \(94818816/1369\) | ||
| \( g_3 \) | = | \(-3742848/37\) |
Automorphism group
|
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X)\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) | |
|
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
||||
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) | |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [C![1,-1,0],C![1,-1,1],C![1,0,0],C![1,0,1]];
All rational points: (1 : -1 : 0), (1 : -1 : 1), (1 : 0 : 0), (1 : 0 : 1)
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank: \(1\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(1\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 0.10222281648
Real period: 6.5168887477787002702922413864
Tamagawa numbers: 3 (p = 37)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\Z/{3}\Z\)
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $G_{3,3}$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
Elliptic curve 37.b2
Elliptic curve 37.a1
Endomorphisms
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):| \(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).