Properties

Label 1350.a.5400.1
Conductor $1350$
Discriminant $5400$
Mordell-Weil group \(\Z/{12}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x)y = x^5 + 4x^4 + 4x^3 - x^2 + 3$ (homogenize, simplify)
$y^2 + (x^2z + xz^2)y = x^5z + 4x^4z^2 + 4x^3z^3 - x^2z^4 + 3z^6$ (dehomogenize, simplify)
$y^2 = 4x^5 + 17x^4 + 18x^3 - 3x^2 + 12$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([3, 0, -1, 4, 4, 1]), R([0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![3, 0, -1, 4, 4, 1], R![0, 1, 1]);
 
sage: X = HyperellipticCurve(R([12, 0, -3, 18, 17, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1350\) \(=\) \( 2 \cdot 3^{3} \cdot 5^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(5400\) \(=\) \( 2^{3} \cdot 3^{3} \cdot 5^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1380\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
\( I_4 \)  \(=\) \(3969\) \(=\)  \( 3^{4} \cdot 7^{2} \)
\( I_6 \)  \(=\) \(1536129\) \(=\)  \( 3^{2} \cdot 7 \cdot 37 \cdot 659 \)
\( I_{10} \)  \(=\) \(691200\) \(=\)  \( 2^{10} \cdot 3^{3} \cdot 5^{2} \)
\( J_2 \)  \(=\) \(345\) \(=\)  \( 3 \cdot 5 \cdot 23 \)
\( J_4 \)  \(=\) \(4794\) \(=\)  \( 2 \cdot 3 \cdot 17 \cdot 47 \)
\( J_6 \)  \(=\) \(89568\) \(=\)  \( 2^{5} \cdot 3^{2} \cdot 311 \)
\( J_8 \)  \(=\) \(1979631\) \(=\)  \( 3^{2} \cdot 219959 \)
\( J_{10} \)  \(=\) \(5400\) \(=\)  \( 2^{3} \cdot 3^{3} \cdot 5^{2} \)
\( g_1 \)  \(=\) \(7240885875/8\)
\( g_2 \)  \(=\) \(145821495/4\)
\( g_3 \)  \(=\) \(1974228\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (-2 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (-1 : -1 : 1),\, (-1 : 1 : 1),\, (-2 : -1 : 1)\)
All points: \((1 : 0 : 0),\, (-2 : 0 : 1),\, (-1 : -2 : 1),\, (-1 : 2 : 1)\)

magma: [C![-2,-1,1],C![-1,-1,1],C![-1,1,1],C![1,0,0]]; // minimal model
 
magma: [C![-2,0,1],C![-1,-2,1],C![-1,2,1],C![1,0,0]]; // simplified model
 

Number of rational Weierstrass points: \(2\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{12}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0\) \(12\)
Generator $D_0$ Height Order
\((-1 : 1 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0\) \(12\)
Generator $D_0$ Height Order
\((-1 : 2 : 1) - (1 : 0 : 0)\) \(x + z\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 + 2z^3\) \(0\) \(12\)

2-torsion field: 4.0.5400.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 22.24770 \)
Tamagawa product: \( 3 \)
Torsion order:\( 12 \)
Leading coefficient: \( 0.463493 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(3\) \(3\) \(( 1 - T )( 1 + T + 2 T^{2} )\)
\(3\) \(3\) \(3\) \(1\) \(1 + T\)
\(5\) \(2\) \(2\) \(1\) \(( 1 - T )( 1 + T )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.3 yes
\(3\) 3.720.4 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 15.a
  Elliptic curve isogeny class 90.b

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);