Properties

Label 13298.a.26596.1
Conductor $13298$
Discriminant $26596$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x)y = 2x^3 + 3x^2 + 3x + 1$ (homogenize, simplify)
$y^2 + (x^3 + xz^2)y = 2x^3z^3 + 3x^2z^4 + 3xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^4 + 8x^3 + 13x^2 + 12x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 3, 3, 2]), R([0, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 3, 3, 2], R![0, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, 12, 13, 8, 2, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(13298\) \(=\) \( 2 \cdot 61 \cdot 109 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(26596\) \(=\) \( 2^{2} \cdot 61 \cdot 109 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(248\) \(=\)  \( 2^{3} \cdot 31 \)
\( I_4 \)  \(=\) \(1456\) \(=\)  \( 2^{4} \cdot 7 \cdot 13 \)
\( I_6 \)  \(=\) \(110781\) \(=\)  \( 3^{3} \cdot 11 \cdot 373 \)
\( I_{10} \)  \(=\) \(-106384\) \(=\)  \( - 2^{4} \cdot 61 \cdot 109 \)
\( J_2 \)  \(=\) \(124\) \(=\)  \( 2^{2} \cdot 31 \)
\( J_4 \)  \(=\) \(398\) \(=\)  \( 2 \cdot 199 \)
\( J_6 \)  \(=\) \(463\) \(=\)  \( 463 \)
\( J_8 \)  \(=\) \(-25248\) \(=\)  \( - 2^{5} \cdot 3 \cdot 263 \)
\( J_{10} \)  \(=\) \(-26596\) \(=\)  \( - 2^{2} \cdot 61 \cdot 109 \)
\( g_1 \)  \(=\) \(-7329062656/6649\)
\( g_2 \)  \(=\) \(-189709088/6649\)
\( g_3 \)  \(=\) \(-1779772/6649\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\) \((-1 : 0 : 2)\)
\((-2 : 1 : 1)\) \((-1 : 5 : 2)\) \((-3 : 7 : 2)\) \((-2 : 9 : 1)\) \((-3 : 32 : 2)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\) \((-1 : 0 : 2)\)
\((-2 : 1 : 1)\) \((-1 : 5 : 2)\) \((-3 : 7 : 2)\) \((-2 : 9 : 1)\) \((-3 : 32 : 2)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : 0 : 1)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\) \((-1 : -5 : 2)\)
\((-1 : 5 : 2)\) \((-2 : -8 : 1)\) \((-2 : 8 : 1)\) \((-3 : -25 : 2)\) \((-3 : 25 : 2)\)

magma: [C![-3,7,2],C![-3,32,2],C![-2,1,1],C![-2,9,1],C![-1,0,2],C![-1,1,1],C![-1,5,2],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,0,0]]; // minimal model
 
magma: [C![-3,-25,2],C![-3,25,2],C![-2,-8,1],C![-2,8,1],C![-1,-5,2],C![-1,0,1],C![-1,5,2],C![0,-2,1],C![0,2,1],C![1,-1,0],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.141253\) \(\infty\)
\((-1 : 1 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.125644\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 - z^3\) \(0.141253\) \(\infty\)
\((-1 : 1 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.125644\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3xz^2 - 2z^3\) \(0.141253\) \(\infty\)
\((-1 : 0 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2\) \(0.125644\) \(\infty\)

2-torsion field: 5.1.26596.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.016597 \)
Real period: \( 17.60869 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.584504 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T^{2} )\)
\(61\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 61 T^{2} )\)
\(109\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 15 T + 109 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);