Properties

Label 130944.a
Conductor $130944$
Sato-Tate group $N(\mathrm{U}(1)\times\mathrm{SU}(2))$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\C \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{CM} \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 130944.a

Label Equation
130944.a.261888.1 \(y^2 + xy = -x^6 - 48x^4 - 768x^2 - 4092\)
130944.a.261888.2 \(y^2 + xy = -x^6 + 48x^4 - 768x^2 + 4092\)

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( 1 - T\)
\(3\)\( ( 1 - T )( 1 + 3 T^{2} )\)
\(11\)\( ( 1 - T )( 1 + 11 T^{2} )\)
\(31\)\( ( 1 + T )( 1 + 31 T^{2} )\)
 
Good L-factors:
Prime L-Factor
\(5\)\( ( 1 - 2 T + 5 T^{2} )( 1 + 2 T + 5 T^{2} )\)
\(7\)\( ( 1 - 4 T + 7 T^{2} )( 1 + 7 T^{2} )\)
\(13\)\( ( 1 - 2 T + 13 T^{2} )( 1 + 6 T + 13 T^{2} )\)
\(17\)\( ( 1 - 2 T + 17 T^{2} )^{2}\)
\(19\)\( ( 1 + 19 T^{2} )^{2}\)
\(23\)\( ( 1 + 23 T^{2} )^{2}\)
\(29\)\( ( 1 - 10 T + 29 T^{2} )( 1 + 2 T + 29 T^{2} )\)
$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $N(\mathrm{U}(1)\times\mathrm{SU}(2))$, \(\quad \mathrm{ST}^0 = \mathrm{U}(1)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 64.a
  Elliptic curve isogeny class 2046.i

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{-1}) \) with defining polynomial \(x^{2} + 1\)

Endomorphism algebra over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q(\sqrt{-1}) \)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\R \times \C\)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.