Properties

Label 12544.e.50176.1
Conductor $12544$
Discriminant $50176$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = x^5 + x^4 - 3x^3 - 2x^2 + 2x + 1$ (homogenize, simplify)
$y^2 = x^5z + x^4z^2 - 3x^3z^3 - 2x^2z^4 + 2xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^5 + x^4 - 3x^3 - 2x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 2, -2, -3, 1, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 2, -2, -3, 1, 1], R![]);
 
sage: X = HyperellipticCurve(R([1, 2, -2, -3, 1, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(12544\) \(=\) \( 2^{8} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(50176\) \(=\) \( 2^{10} \cdot 7^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(166\) \(=\)  \( 2 \cdot 83 \)
\( I_4 \)  \(=\) \(532\) \(=\)  \( 2^{2} \cdot 7 \cdot 19 \)
\( I_6 \)  \(=\) \(28168\) \(=\)  \( 2^{3} \cdot 7 \cdot 503 \)
\( I_{10} \)  \(=\) \(196\) \(=\)  \( 2^{2} \cdot 7^{2} \)
\( J_2 \)  \(=\) \(332\) \(=\)  \( 2^{2} \cdot 83 \)
\( J_4 \)  \(=\) \(3174\) \(=\)  \( 2 \cdot 3 \cdot 23^{2} \)
\( J_6 \)  \(=\) \(15236\) \(=\)  \( 2^{2} \cdot 13 \cdot 293 \)
\( J_8 \)  \(=\) \(-1253981\) \(=\)  \( - 19 \cdot 31 \cdot 2129 \)
\( J_{10} \)  \(=\) \(50176\) \(=\)  \( 2^{10} \cdot 7^{2} \)
\( g_1 \)  \(=\) \(3939040643/49\)
\( g_2 \)  \(=\) \(907425969/392\)
\( g_3 \)  \(=\) \(26240201/784\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : 0 : 1),\, (5 : -6 : 4),\, (5 : 6 : 4)\)
All points: \((1 : 0 : 0),\, (-1 : 0 : 1),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : 0 : 1),\, (5 : -6 : 4),\, (5 : 6 : 4)\)
All points: \((1 : 0 : 0),\, (0 : -1/2 : 1),\, (0 : 1/2 : 1),\, (-1 : 0 : 1),\, (1 : 0 : 1),\, (5 : -3 : 4),\, (5 : 3 : 4)\)

magma: [C![-1,0,1],C![0,-1,1],C![0,1,1],C![1,0,0],C![1,0,1],C![5,-6,4],C![5,6,4]]; // minimal model
 
magma: [C![-1,0,1],C![0,-1/2,1],C![0,1/2,1],C![1,0,0],C![1,0,1],C![5,-3,4],C![5,3,4]]; // simplified model
 

Number of rational Weierstrass points: \(3\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.206590\) \(\infty\)
\((-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.206590\) \(\infty\)
\((-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
Generator $D_0$ Height Order
\((0 : -1/2 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-1/2z^3\) \(0.206590\) \(\infty\)
\((-1 : 0 : 1) + (1 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)
\((1 : 0 : 1) - (1 : 0 : 0)\) \(x - z\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(2\)

2-torsion field: \(\Q(\zeta_{7})^+\)

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(3\)
Regulator: \( 0.206590 \)
Real period: \( 19.86190 \)
Tamagawa product: \( 4 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.025818 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(8\) \(10\) \(4\) \(1\)
\(7\) \(2\) \(2\) \(1\) \(1 + 4 T + 7 T^{2}\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.240.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);