L-function data
| Analytic rank: | \(0\) | ||||||||||||||||||||||||||||||
| Mordell-Weil rank: | \(0\) | ||||||||||||||||||||||||||||||
| Bad L-factors: |
| ||||||||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||||||||
Sato-Tate group
\(\mathrm{ST} =\) $N(\mathrm{SU}(2)\times\mathrm{SU}(2))$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) \(\Q(\sqrt{5}) \) with defining polynomial \(x^{2} - x - 1\)
Endomorphism algebra over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{5}) \) |
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 12500.a
| Label | Equation |
|---|---|
| 12500.a.12500.1 | \(y^2 + (x^3 + 1)y = x^6 + 2x^3 - x\) |