Properties

Label 1225.a
Conductor $1225$
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Learn more

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(5\)\( ( 1 - T )^{2}\)
\(7\)\( ( 1 + T )^{2}\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{3} + 4 T^{4}\) 2.2.b_a
\(3\) \( 1 + T + 2 T^{2} + 3 T^{3} + 9 T^{4}\) 2.3.b_c
\(11\) \( 1 - T + 18 T^{2} - 11 T^{3} + 121 T^{4}\) 2.11.ab_s
\(13\) \( 1 - 5 T + 28 T^{2} - 65 T^{3} + 169 T^{4}\) 2.13.af_bc
\(17\) \( 1 + 5 T + 36 T^{2} + 85 T^{3} + 289 T^{4}\) 2.17.f_bk
\(19\) \( 1 + 6 T + 30 T^{2} + 114 T^{3} + 361 T^{4}\) 2.19.g_be
\(23\) \( 1 + 2 T + 30 T^{2} + 46 T^{3} + 529 T^{4}\) 2.23.c_be
\(29\) \( 1 - T + 20 T^{2} - 29 T^{3} + 841 T^{4}\) 2.29.ab_u
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{17}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.

Genus 2 curves in isogeny class 1225.a

Label Equation
1225.a.6125.1 \(y^2 + (x^3 + x^2)y = 2x^3 + x^2 + x + 2\)