Properties

Label 1216.a.1216.1
Conductor 1216
Discriminant -1216
Mordell-Weil group \(\Z/{6}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Learn more about

Show commands for: SageMath / Magma

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x + 1)y = -x^6 + x^4 - x^3 - x^2$ (homogenize, simplify)
$y^2 + (xz^2 + z^3)y = -x^6 + x^4z^2 - x^3z^3 - x^2z^4$ (dehomogenize, simplify)
$y^2 = -4x^6 + 4x^4 - 4x^3 - 3x^2 + 2x + 1$ (minimize, homogenize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -1, -1, 1, 0, -1]), R([1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -1, -1, 1, 0, -1], R![1, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -3, -4, 4, 0, -4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(1216\) \(=\) \( 2^{6} \cdot 19 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-1216\) \(=\) \( - 2^{6} \cdot 19 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1248\) \(=\)  \( 2^{5} \cdot 3 \cdot 13 \)
\( I_4 \)  \(=\) \(-10560\) \(=\)  \( - 2^{6} \cdot 3 \cdot 5 \cdot 11 \)
\( I_6 \)  \(=\) \(-4549632\) \(=\)  \( - 2^{10} \cdot 3 \cdot 1481 \)
\( I_{10} \)  \(=\) \(-4980736\) \(=\)  \( - 2^{18} \cdot 19 \)
\( J_2 \)  \(=\) \(156\) \(=\)  \( 2^{2} \cdot 3 \cdot 13 \)
\( J_4 \)  \(=\) \(1124\) \(=\)  \( 2^{2} \cdot 281 \)
\( J_6 \)  \(=\) \(11920\) \(=\)  \( 2^{4} \cdot 5 \cdot 149 \)
\( J_8 \)  \(=\) \(149036\) \(=\)  \( 2^{2} \cdot 19 \cdot 37 \cdot 53 \)
\( J_{10} \)  \(=\) \(-1216\) \(=\)  \( - 2^{6} \cdot 19 \)
\( g_1 \)  \(=\) \(-1443587184/19\)
\( g_2 \)  \(=\) \(-66674556/19\)
\( g_3 \)  \(=\) \(-4532580/19\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((0 : 0 : 1),\, (-1 : 0 : 1),\, (0 : -1 : 1)\)

magma: [C![-1,0,1],C![0,-1,1],C![0,0,1]];
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{6}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) + (0 : -1 : 1) - D_\infty\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2 - z^3\) \(0\) \(6\)

2-torsion field: 6.2.184832.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(1\)
Regulator: \( 1 \)
Real period: \( 14.63227 \)
Tamagawa product: \( 1 \)
Torsion order:\( 6 \)
Leading coefficient: \( 0.406452 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(6\) \(1\) \(1 + T\)
\(19\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 2 T + 19 T^{2} )\)

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).