# Properties

 Label 12105.a.181575.1 Conductor 12105 Discriminant 181575 Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 2, 3, 0, -1], R![1, 1, 0, 1]);

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 2, 3, 0, -1]), R([1, 1, 0, 1]))

$y^2 + (x^3 + x + 1)y = -x^4 + 3x^2 + 2x$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$12105$$ = $$3^{2} \cdot 5 \cdot 269$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$181575$$ = $$3^{3} \cdot 5^{2} \cdot 269$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$200$$ = $$2^{3} \cdot 5^{2}$$ $$I_4$$ = $$16036$$ = $$2^{2} \cdot 19 \cdot 211$$ $$I_6$$ = $$-4106200$$ = $$-1 \cdot 2^{3} \cdot 5^{2} \cdot 7^{2} \cdot 419$$ $$I_{10}$$ = $$743731200$$ = $$2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 269$$ $$J_2$$ = $$25$$ = $$5^{2}$$ $$J_4$$ = $$-141$$ = $$-1 \cdot 3 \cdot 47$$ $$J_6$$ = $$8325$$ = $$3^{2} \cdot 5^{2} \cdot 37$$ $$J_8$$ = $$47061$$ = $$3^{4} \cdot 7 \cdot 83$$ $$J_{10}$$ = $$181575$$ = $$3^{3} \cdot 5^{2} \cdot 269$$ $$g_1$$ = $$390625/7263$$ $$g_2$$ = $$-29375/2421$$ $$g_3$$ = $$23125/807$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$C_2$$ (GAP id : [2,1])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![-3,3,2],C![-3,28,2],C![-2,1,1],C![-2,8,1],C![-1,0,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-4,1],C![1,-1,0],C![1,0,0],C![1,1,1],C![2,-11,1],C![2,0,1]];

Known rational points: (-3 : 3 : 2), (-3 : 28 : 2), (-2 : 1 : 1), (-2 : 8 : 1), (-1 : 0 : 1), (-1 : 1 : 1), (0 : -1 : 1), (0 : 0 : 1), (1 : -4 : 1), (1 : -1 : 0), (1 : 0 : 0), (1 : 1 : 1), (2 : -11 : 1), (2 : 0 : 1)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$0$$

## Invariants of the Jacobian:

Analytic rank*: $$2$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$2$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Regulator: 0.00472592477053 Real period: 14.737062457498297666675882687 Tamagawa numbers: 3 (p = 3), 2 (p = 5), 1 (p = 269) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\mathrm{trivial}$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $\mathrm{USp}(4)$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{USp}(4)$$

### Decomposition

Simple over $$\overline{\Q}$$

### Endomorphisms

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ $$\Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.