Properties

Label 120436.a.481744.1
Conductor $120436$
Discriminant $-481744$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^3y = 6x^3 + 11x^2 + 6x + 1$ (homogenize, simplify)
$y^2 + x^3y = 6x^3z^3 + 11x^2z^4 + 6xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 24x^3 + 44x^2 + 24x + 4$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, 6, 11, 6]), R([0, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, 6, 11, 6], R![0, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([4, 24, 44, 24, 0, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(120436\) \(=\) \( 2^{2} \cdot 30109 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-481744\) \(=\) \( - 2^{4} \cdot 30109 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(312\) \(=\)  \( 2^{3} \cdot 3 \cdot 13 \)
\( I_4 \)  \(=\) \(4677\) \(=\)  \( 3 \cdot 1559 \)
\( I_6 \)  \(=\) \(368463\) \(=\)  \( 3 \cdot 263 \cdot 467 \)
\( I_{10} \)  \(=\) \(-60218\) \(=\)  \( - 2 \cdot 30109 \)
\( J_2 \)  \(=\) \(312\) \(=\)  \( 2^{3} \cdot 3 \cdot 13 \)
\( J_4 \)  \(=\) \(938\) \(=\)  \( 2 \cdot 7 \cdot 67 \)
\( J_6 \)  \(=\) \(13008\) \(=\)  \( 2^{4} \cdot 3 \cdot 271 \)
\( J_8 \)  \(=\) \(794663\) \(=\)  \( 139 \cdot 5717 \)
\( J_{10} \)  \(=\) \(-481744\) \(=\)  \( - 2^{4} \cdot 30109 \)
\( g_1 \)  \(=\) \(-184779159552/30109\)
\( g_2 \)  \(=\) \(-1780519104/30109\)
\( g_3 \)  \(=\) \(-79140672/30109\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\)
\((-1 : 0 : 2)\) \((-1 : 1 : 2)\) \((-1 : 0 : 3)\) \((-1 : 1 : 3)\) \((-2 : 3 : 1)\) \((-2 : 5 : 1)\)
\((2 : 7 : 1)\) \((3 : 8 : 1)\) \((2 : -15 : 1)\) \((3 : -35 : 1)\) \((-6 : 91 : 5)\) \((-6 : 125 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : 1 : 1)\)
\((-1 : 0 : 2)\) \((-1 : 1 : 2)\) \((-1 : 0 : 3)\) \((-1 : 1 : 3)\) \((-2 : 3 : 1)\) \((-2 : 5 : 1)\)
\((2 : 7 : 1)\) \((3 : 8 : 1)\) \((2 : -15 : 1)\) \((3 : -35 : 1)\) \((-6 : 91 : 5)\) \((-6 : 125 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((0 : -2 : 1)\) \((0 : 2 : 1)\)
\((-1 : -1 : 2)\) \((-1 : 1 : 2)\) \((-2 : -2 : 1)\) \((-2 : 2 : 1)\) \((-1 : -1 : 3)\) \((-1 : 1 : 3)\)
\((2 : -22 : 1)\) \((2 : 22 : 1)\) \((-6 : -34 : 5)\) \((-6 : 34 : 5)\) \((3 : -43 : 1)\) \((3 : 43 : 1)\)

magma: [C![-6,91,5],C![-6,125,5],C![-2,3,1],C![-2,5,1],C![-1,0,1],C![-1,0,2],C![-1,0,3],C![-1,1,1],C![-1,1,2],C![-1,1,3],C![0,-1,1],C![0,1,1],C![1,-1,0],C![1,0,0],C![2,-15,1],C![2,7,1],C![3,-35,1],C![3,8,1]]; // minimal model
 
magma: [C![-6,-34,5],C![-6,34,5],C![-2,-2,1],C![-2,2,1],C![-1,-1,1],C![-1,-1,2],C![-1,-1,3],C![-1,1,1],C![-1,1,2],C![-1,1,3],C![0,-2,1],C![0,2,1],C![1,-1,0],C![1,1,0],C![2,-22,1],C![2,22,1],C![3,-43,1],C![3,43,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 1 : 2) - (1 : 0 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.678297\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.392597\) \(\infty\)
\((-1 : 0 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0.069829\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 2) - (1 : 0 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.678297\) \(\infty\)
\((-1 : 0 : 1) - (1 : 0 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.392597\) \(\infty\)
\((-1 : 0 : 1) + (0 : 1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 + z^3\) \(0.069829\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 2) - (1 : 1 : 0)\) \(z (2x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.678297\) \(\infty\)
\((-1 : -1 : 1) - (1 : 1 : 0)\) \(z (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - 2z^3\) \(0.392597\) \(\infty\)
\((-1 : -1 : 1) + (0 : 2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 2xz^2 + 2z^3\) \(0.069829\) \(\infty\)

2-torsion field: 6.4.7707904.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.018135 \)
Real period: \( 17.82099 \)
Tamagawa product: \( 3 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.969564 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(2\) \(4\) \(3\) \(1 + 2 T + 2 T^{2}\)
\(30109\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 200 T + 30109 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);