Minimal equation
Minimal equation
Simplified equation
$y^2 + y = -x^6$ | (homogenize, simplify) |
$y^2 + z^3y = -x^6$ | (dehomogenize, simplify) |
$y^2 = -4x^6 + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(11664\) | \(=\) | \( 2^{4} \cdot 3^{6} \) | magma: Conductor(LSeries(C)); Factorization($1);
|
Discriminant: | \( \Delta \) | \(=\) | \(11664\) | \(=\) | \( 2^{4} \cdot 3^{6} \) | magma: Discriminant(C); Factorization(Integers()!$1);
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(40\) | \(=\) | \( 2^{3} \cdot 5 \) |
\( I_4 \) | \(=\) | \(45\) | \(=\) | \( 3^{2} \cdot 5 \) |
\( I_6 \) | \(=\) | \(555\) | \(=\) | \( 3 \cdot 5 \cdot 37 \) |
\( I_{10} \) | \(=\) | \(6\) | \(=\) | \( 2 \cdot 3 \) |
\( J_2 \) | \(=\) | \(120\) | \(=\) | \( 2^{3} \cdot 3 \cdot 5 \) |
\( J_4 \) | \(=\) | \(330\) | \(=\) | \( 2 \cdot 3 \cdot 5 \cdot 11 \) |
\( J_6 \) | \(=\) | \(-320\) | \(=\) | \( - 2^{6} \cdot 5 \) |
\( J_8 \) | \(=\) | \(-36825\) | \(=\) | \( - 3 \cdot 5^{2} \cdot 491 \) |
\( J_{10} \) | \(=\) | \(11664\) | \(=\) | \( 2^{4} \cdot 3^{6} \) |
\( g_1 \) | \(=\) | \(6400000/3\) | ||
\( g_2 \) | \(=\) | \(440000/9\) | ||
\( g_3 \) | \(=\) | \(-32000/81\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ | magma: AutomorphismGroup(C); IdentifyGroup($1);
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_3:D_4$ | magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
Rational points
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{3}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 + xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0.900641\) | \(\infty\) |
\(2 \cdot(0 : -1 : 1) - D_\infty\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 + xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0.900641\) | \(\infty\) |
\(2 \cdot(0 : -1 : 1) - D_\infty\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\(D_0 - D_\infty\) | \(x^2 + xz + z^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 + z^3\) | \(0.900641\) | \(\infty\) |
\(2 \cdot(0 : -1 : 1) - D_\infty\) | \(x^2\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(3\) |
BSD invariants
Hasse-Weil conjecture: | verified |
Analytic rank: | \(1\) |
Mordell-Weil rank: | \(1\) |
2-Selmer rank: | \(1\) |
Regulator: | \( 0.900641 \) |
Real period: | \( 10.21623 \) |
Tamagawa product: | \( 1 \) |
Torsion order: | \( 3 \) |
Leading coefficient: | \( 1.022351 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | L-factor | Cluster picture |
---|---|---|---|---|---|
\(2\) | \(4\) | \(4\) | \(1\) | \(1 + 2 T^{2}\) | |
\(3\) | \(6\) | \(6\) | \(1\) | \(1\) |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.120.2 | no |
\(3\) | 3.8640.7 | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $D_{6,2}$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{U}(1)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 432.d
Elliptic curve isogeny class 27.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - 3 x^{10} - 8 x^{9} - 6 x^{8} + 12 x^{7} + 47 x^{6} + 78 x^{5} + 78 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 1\)
Not of \(\GL_2\)-type over \(\overline{\Q}\)
Endomorphism ring over \(\overline{\Q}\):
\(\End (J_{\overline{\Q}})\) | \(\simeq\) | a non-Eichler order of index \(16\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\) |
\(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q(\sqrt{-3}) \)\()\) |
\(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\C)\) |
Remainder of the endomorphism lattice by field
Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{384}{59} a^{11} + \frac{296}{59} a^{10} + \frac{914}{59} a^{9} + \frac{2365}{59} a^{8} + \frac{524}{59} a^{7} - \frac{4948}{59} a^{6} - \frac{14170}{59} a^{5} - \frac{19194}{59} a^{4} - \frac{15636}{59} a^{3} - \frac{7870}{59} a^{2} - \frac{2590}{59} a - \frac{546}{59}\) with minimal polynomial \(x^{2} - x + 1\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(4\) in \(\Z [\frac{1 + \sqrt{-3}}{2}] \times \Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) \(\times\) \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\sqrt{3}) \) with generator \(-\frac{23}{5} a^{11} + \frac{11}{5} a^{10} + 13 a^{9} + 30 a^{8} + \frac{67}{5} a^{7} - \frac{314}{5} a^{6} - \frac{926}{5} a^{5} - 268 a^{4} - 226 a^{3} - \frac{589}{5} a^{2} - \frac{186}{5} a - \frac{36}{5}\) with minimal polynomial \(x^{2} - 3\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-\frac{2499}{295} a^{11} + \frac{327}{59} a^{10} + \frac{6469}{295} a^{9} + \frac{15786}{295} a^{8} + \frac{897}{59} a^{7} - \frac{33294}{295} a^{6} - \frac{19200}{59} a^{5} - \frac{131424}{295} a^{4} - \frac{106596}{295} a^{3} - \frac{51411}{295} a^{2} - \frac{15678}{295} a - \frac{3344}{295}\) with minimal polynomial \(x^{2} + 1\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(\frac{137}{59} a^{11} - \frac{131}{295} a^{10} - \frac{2147}{295} a^{9} - \frac{4903}{295} a^{8} - \frac{2977}{295} a^{7} + \frac{9336}{295} a^{6} + \frac{30161}{295} a^{5} + \frac{46267}{295} a^{4} + \frac{41313}{295} a^{3} + \frac{22837}{295} a^{2} + \frac{1601}{59} a + \frac{1788}{295}\) with minimal polynomial \(x^{3} - 2\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(-\frac{49}{5} a^{11} + \frac{28}{5} a^{10} + 26 a^{9} + 64 a^{8} + \frac{111}{5} a^{7} - \frac{647}{5} a^{6} - \frac{1938}{5} a^{5} - 545 a^{4} - 457 a^{3} - \frac{1157}{5} a^{2} - \frac{368}{5} a - \frac{78}{5}\) with minimal polynomial \(x^{3} - 2\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 3.1.108.1 with generator \(\frac{2206}{295} a^{11} - \frac{1521}{295} a^{10} - \frac{5523}{295} a^{9} - \frac{13977}{295} a^{8} - \frac{3572}{295} a^{7} + \frac{28837}{295} a^{6} + \frac{84181}{295} a^{5} + \frac{114508}{295} a^{4} + \frac{93502}{295} a^{3} + \frac{45426}{295} a^{2} + \frac{13707}{295} a + \frac{2814}{295}\) with minimal polynomial \(x^{3} - 2\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
Of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) \(\Q(\zeta_{12})\) with generator \(-\frac{571}{295} a^{11} + \frac{493}{295} a^{10} + \frac{1317}{295} a^{9} + \frac{3468}{295} a^{8} + \frac{266}{295} a^{7} - \frac{7384}{295} a^{6} - \frac{20683}{295} a^{5} - \frac{26182}{295} a^{4} - \frac{19963}{295} a^{3} - \frac{1666}{59} a^{2} - \frac{2352}{295} a - \frac{122}{59}\) with minimal polynomial \(x^{4} - x^{2} + 1\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(4\) in \(\Z [\frac{1 + \sqrt{-3}}{2}] \times \Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) \(\times\) \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.0.34992.1 with generator \(\frac{28}{59} a^{11} - \frac{457}{295} a^{10} + \frac{81}{295} a^{9} - \frac{161}{295} a^{8} + \frac{1606}{295} a^{7} + \frac{1477}{295} a^{6} + \frac{617}{295} a^{5} - \frac{4061}{295} a^{4} - \frac{6564}{295} a^{3} - \frac{5006}{295} a^{2} - \frac{277}{59} a + \frac{11}{295}\) with minimal polynomial \(x^{6} - 3 x^{5} + 5 x^{3} - 3 x + 1\):
\(\End (J_{F})\) | \(\simeq\) | an order of index \(4\) in \(\Z [\frac{1 + \sqrt{-3}}{2}] \times \Z [\frac{1 + \sqrt{-3}}{2}]\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) \(\times\) \(\Q(\sqrt{-3}) \) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\C \times \C\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.2.559872.1 with generator \(\frac{2132}{295} a^{11} - \frac{1786}{295} a^{10} - \frac{5184}{295} a^{9} - \frac{12411}{295} a^{8} - \frac{1717}{295} a^{7} + \frac{28428}{295} a^{6} + \frac{76211}{295} a^{5} + \frac{98539}{295} a^{4} + \frac{74651}{295} a^{3} + \frac{6717}{59} a^{2} + \frac{10229}{295} a + \frac{461}{59}\) with minimal polynomial \(x^{6} - 3 x^{4} - 2 x^{3} + 3 x^{2} + 6 x + 1\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(12\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.2.559872.1 with generator \(-\frac{276}{295} a^{11} + \frac{198}{295} a^{10} + \frac{727}{295} a^{9} + \frac{1698}{295} a^{8} + \frac{266}{295} a^{7} - \frac{3844}{295} a^{6} - \frac{10358}{295} a^{5} - \frac{13497}{295} a^{4} - \frac{9638}{295} a^{3} - \frac{781}{59} a^{2} - \frac{582}{295} a - \frac{63}{59}\) with minimal polynomial \(x^{6} - 3 x^{4} - 2 x^{3} + 3 x^{2} + 6 x + 1\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(12\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.2.559872.1 with generator \(-a^{11} + a^{10} + 2 a^{9} + 6 a^{8} - 12 a^{6} - 35 a^{5} - 43 a^{4} - 35 a^{3} - 15 a^{2} - 5 a - 1\) with minimal polynomial \(x^{6} - 3 x^{4} - 2 x^{3} + 3 x^{2} + 6 x + 1\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(12\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.0.186624.1 with generator \(\frac{249}{59} a^{11} - \frac{897}{295} a^{10} - \frac{2944}{295} a^{9} - \frac{7966}{295} a^{8} - \frac{2099}{295} a^{7} + \frac{15657}{295} a^{6} + \frac{47202}{295} a^{5} + \frac{65069}{295} a^{4} + \frac{55236}{295} a^{3} + \frac{28714}{295} a^{2} + \frac{1968}{59} a + \frac{2186}{295}\) with minimal polynomial \(x^{6} - 2 x^{3} + 2\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.0.186624.1 with generator \(-\frac{106}{59} a^{11} + \frac{588}{295} a^{10} + \frac{1181}{295} a^{9} + \frac{2704}{295} a^{8} - \frac{399}{295} a^{7} - \frac{7273}{295} a^{6} - \frac{16913}{295} a^{5} - \frac{19196}{295} a^{4} - \frac{11739}{295} a^{3} - \frac{3081}{295} a^{2} - \frac{85}{59} a - \frac{29}{295}\) with minimal polynomial \(x^{6} - 2 x^{3} + 2\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple
Over subfield \(F \simeq \) 6.0.186624.1 with generator \(\frac{1293}{295} a^{11} - \frac{816}{295} a^{10} - \frac{709}{59} a^{9} - \frac{1583}{59} a^{8} - \frac{2312}{295} a^{7} + \frac{17839}{295} a^{6} + \frac{49401}{295} a^{5} + \frac{13414}{59} a^{4} + \frac{10559}{59} a^{3} + \frac{24904}{295} a^{2} + \frac{7671}{295} a + \frac{1856}{295}\) with minimal polynomial \(x^{6} - 2 x^{3} + 2\):
\(\End (J_{F})\) | \(\simeq\) | a non-Eichler order of index \(4\) in a maximal order of \(\End (J_{F}) \otimes \Q\) |
\(\End (J_{F}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{F}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
Not of \(\GL_2\)-type, not simple