Properties

Label 11488.c.183808.1
Conductor $11488$
Discriminant $-183808$
Mordell-Weil group \(\Z/{4}\Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + xy = 8x^6 - 20x^5 + 33x^4 - 32x^3 + 23x^2 - 10x + 3$ (homogenize, simplify)
$y^2 + xz^2y = 8x^6 - 20x^5z + 33x^4z^2 - 32x^3z^3 + 23x^2z^4 - 10xz^5 + 3z^6$ (dehomogenize, simplify)
$y^2 = 32x^6 - 80x^5 + 132x^4 - 128x^3 + 93x^2 - 40x + 12$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([3, -10, 23, -32, 33, -20, 8]), R([0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![3, -10, 23, -32, 33, -20, 8], R![0, 1]);
 
sage: X = HyperellipticCurve(R([12, -40, 93, -128, 132, -80, 32]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(11488\) \(=\) \( 2^{5} \cdot 359 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-183808\) \(=\) \( - 2^{9} \cdot 359 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(7784\) \(=\)  \( 2^{3} \cdot 7 \cdot 139 \)
\( I_4 \)  \(=\) \(15073\) \(=\)  \( 15073 \)
\( I_6 \)  \(=\) \(38515369\) \(=\)  \( 487 \cdot 79087 \)
\( I_{10} \)  \(=\) \(22976\) \(=\)  \( 2^{6} \cdot 359 \)
\( J_2 \)  \(=\) \(7784\) \(=\)  \( 2^{3} \cdot 7 \cdot 139 \)
\( J_4 \)  \(=\) \(2514562\) \(=\)  \( 2 \cdot 1257281 \)
\( J_6 \)  \(=\) \(1079245424\) \(=\)  \( 2^{4} \cdot 67452839 \)
\( J_8 \)  \(=\) \(519456082143\) \(=\)  \( 3 \cdot 19 \cdot 12553 \cdot 725983 \)
\( J_{10} \)  \(=\) \(183808\) \(=\)  \( 2^{9} \cdot 359 \)
\( g_1 \)  \(=\) \(55814132022789952/359\)
\( g_2 \)  \(=\) \(2316332330970154/359\)
\( g_3 \)  \(=\) \(127719117627262/359\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z/{4}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0\) \(4\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(0\) \(4\)

2-torsion field: 6.4.263948288.2

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(3\)
Regulator: \( 1 \)
Real period: \( 5.786292 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.446573 \)
Analytic order of Ш: \( 4 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(5\) \(9\) \(1\) \(1 - T + 2 T^{2}\)
\(359\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 8 T + 359 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.15.1 yes

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);