Minimal equation
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-9, 0, 103, 0, -315, 0, 51], R![1, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-9, 0, 103, 0, -315, 0, 51]), R([1, 0, 1]))
$y^2 + (x^2 + 1)y = 51x^6 - 315x^4 + 103x^2 - 9$
Invariants
magma: Conductor(LSeries(C)); Factorization($1);
|
|||||
\( N \) | = | \( 114240 \) | = | \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) | |
magma: Discriminant(C); Factorization(Integers()!$1);
|
|||||
\( \Delta \) | = | \(114240\) | = | \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
Igusa-Clebsch invariants
magma: IgusaClebschInvariants(C); [Factorization(Integers()!a): a in $1];
sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
Igusa invariants
magma: IgusaInvariants(C); [Factorization(Integers()!a): a in $1];
G2 invariants
magma: G2Invariants(C);
\( I_2 \) | = | \(10053216\) | = | \( 2^{5} \cdot 3^{2} \cdot 67 \cdot 521 \) |
\( I_4 \) | = | \(3341086802112\) | = | \( 2^{6} \cdot 3 \cdot 29 \cdot 600051509 \) |
\( I_6 \) | = | \(9160538337022040064\) | = | \( 2^{11} \cdot 3^{2} \cdot 151 \cdot 3847 \cdot 855557891 \) |
\( I_{10} \) | = | \(467927040\) | = | \( 2^{18} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
\( J_2 \) | = | \(1256652\) | = | \( 2^{2} \cdot 3^{2} \cdot 67 \cdot 521 \) |
\( J_4 \) | = | \(30995939524\) | = | \( 2^{2} \cdot 11 \cdot 704453171 \) |
\( J_6 \) | = | \(838652756430720\) | = | \( 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 17 \cdot 7789 \cdot 42841 \) |
\( J_8 \) | = | \(23286599174677950716\) | = | \( 2^{2} \cdot 11 \cdot 1217233 \cdot 434790126733 \) |
\( J_{10} \) | = | \(114240\) | = | \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
\( g_1 \) | = | \(16322019979578992366124730896/595\) | ||
\( g_2 \) | = | \(320367650677941067851565476/595\) | ||
\( g_3 \) | = | \(11592952003636922822112\) |
Automorphism group
magma: AutomorphismGroup(C); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X)\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) | ||
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
|
|||||
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | \(V_4 \) | (GAP id : [4,2]) |
Rational points
magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
This curve is locally solvable everywhere.
magma: [];
There are no rational points.
magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
Number of rational Weierstrass points: \(0\)
Invariants of the Jacobian:
Analytic rank: \(0\)
magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1);
2-Selmer rank: \(6\)
magma: HasSquareSha(Jacobian(C));
Order of Ш*: square
Regulator: 1.0
Real period: 0.16518202509712685856962351073
Tamagawa numbers: 1 (p = 2), 1 (p = 3), 1 (p = 5), 1 (p = 7), 1 (p = 17)
magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);
Torsion: \(\Z/{2}\Z \times \Z/{2}\Z\)
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $G_{3,3}$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
Elliptic curve 1120.j1
Elliptic curve 102.c1
Endomorphisms
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):\(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).