Properties

Label 114240.b.114240.1
Conductor $114240$
Discriminant $-114240$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + x^2y = -17x^6 - 94x^4 - 172x^2 - 105$ (homogenize, simplify)
$y^2 + x^2zy = -17x^6 - 94x^4z^2 - 172x^2z^4 - 105z^6$ (dehomogenize, simplify)
$y^2 = -68x^6 - 375x^4 - 688x^2 - 420$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-105, 0, -172, 0, -94, 0, -17]), R([0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-105, 0, -172, 0, -94, 0, -17], R![0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-420, 0, -688, 0, -375, 0, -68]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(114240\) \(=\) \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-114240\) \(=\) \( - 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1372800\) \(=\)  \( 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \)
\( I_4 \)  \(=\) \(230397\) \(=\)  \( 3 \cdot 61 \cdot 1259 \)
\( I_6 \)  \(=\) \(105393832080\) \(=\)  \( 2^{4} \cdot 3 \cdot 5 \cdot 439140967 \)
\( I_{10} \)  \(=\) \(14280\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
\( J_2 \)  \(=\) \(1372800\) \(=\)  \( 2^{7} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 13 \)
\( J_4 \)  \(=\) \(78524006402\) \(=\)  \( 2 \cdot 14431 \cdot 2720671 \)
\( J_6 \)  \(=\) \(5988740824631040\) \(=\)  \( 2^{8} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 43 \cdot 211 \cdot 1444463 \)
\( J_8 \)  \(=\) \(513830955658038681599\) \(=\)  \( 149 \cdot 516653 \cdot 6674750565167 \)
\( J_{10} \)  \(=\) \(114240\) \(=\)  \( 2^{6} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \)
\( g_1 \)  \(=\) \(5078846877868228608000000000/119\)
\( g_2 \)  \(=\) \(211618205972373394022400000/119\)
\( g_3 \)  \(=\) \(98794294687365488640000\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable except over $\R$.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(9x^2 + 14z^2\) \(=\) \(0,\) \(9y\) \(=\) \(-4xz^2 + 7z^3\) \(2.621030\) \(\infty\)
\(D_0 - D_\infty\) \(3x^2 + 5z^2\) \(=\) \(0,\) \(6y\) \(=\) \(xz^2 + 5z^3\) \(1.740079\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(17x^2 + 30z^2\) \(=\) \(0,\) \(17y\) \(=\) \(15z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(9x^2 + 14z^2\) \(=\) \(0,\) \(9y\) \(=\) \(-4xz^2 + 7z^3\) \(2.621030\) \(\infty\)
\(D_0 - D_\infty\) \(3x^2 + 5z^2\) \(=\) \(0,\) \(6y\) \(=\) \(xz^2 + 5z^3\) \(1.740079\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(17x^2 + 30z^2\) \(=\) \(0,\) \(17y\) \(=\) \(15z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(9x^2 + 14z^2\) \(=\) \(0,\) \(9y\) \(=\) \(x^2z - 8xz^2 + 14z^3\) \(2.621030\) \(\infty\)
\(D_0 - D_\infty\) \(3x^2 + 5z^2\) \(=\) \(0,\) \(6y\) \(=\) \(x^2z + 2xz^2 + 10z^3\) \(1.740079\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + 2z^3\) \(0\) \(2\)
\(D_0 - D_\infty\) \(17x^2 + 30z^2\) \(=\) \(0,\) \(17y\) \(=\) \(x^2z + 30z^3\) \(0\) \(2\)

2-torsion field: 8.0.665323421736960000.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(5\)
Regulator: \( 4.237720 \)
Real period: \( 3.130021 \)
Tamagawa product: \( 1 \)
Torsion order:\( 4 \)
Leading coefficient: \( 1.658019 \)
Analytic order of Ш: \( 2 \)   (rounded)
Order of Ш:twice a square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(6\) \(6\) \(1\) \(1 + T + 2 T^{2}\)
\(3\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 3 T^{2} )\)
\(5\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 + 2 T + 5 T^{2} )\)
\(7\) \(1\) \(1\) \(1\) \(( 1 + T )( 1 - 4 T + 7 T^{2} )\)
\(17\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 6 T + 17 T^{2} )\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.90.6 yes
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 17.a
  Elliptic curve isogeny class 6720.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);