Properties

Label 110889.a.110889.1
Conductor $110889$
Discriminant $110889$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = x^5 - 3x^4 - 3x^3 + 6x^2 - 3x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = x^5z - 3x^4z^2 - 3x^3z^3 + 6x^2z^4 - 3xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 10x^4 - 10x^3 + 25x^2 - 10x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -3, 6, -3, -3, 1]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -3, 6, -3, -3, 1], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -10, 25, -10, -10, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(110889\) \(=\) \( 3^{4} \cdot 37^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(110889\) \(=\) \( 3^{4} \cdot 37^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1380\) \(=\)  \( 2^{2} \cdot 3 \cdot 5 \cdot 23 \)
\( I_4 \)  \(=\) \(94905\) \(=\)  \( 3^{3} \cdot 5 \cdot 19 \cdot 37 \)
\( I_6 \)  \(=\) \(34200765\) \(=\)  \( 3^{3} \cdot 5 \cdot 37 \cdot 41 \cdot 167 \)
\( I_{10} \)  \(=\) \(14193792\) \(=\)  \( 2^{7} \cdot 3^{4} \cdot 37^{2} \)
\( J_2 \)  \(=\) \(345\) \(=\)  \( 3 \cdot 5 \cdot 23 \)
\( J_4 \)  \(=\) \(1005\) \(=\)  \( 3 \cdot 5 \cdot 67 \)
\( J_6 \)  \(=\) \(-995\) \(=\)  \( - 5 \cdot 199 \)
\( J_8 \)  \(=\) \(-338325\) \(=\)  \( - 3 \cdot 5^{2} \cdot 13 \cdot 347 \)
\( J_{10} \)  \(=\) \(110889\) \(=\)  \( 3^{4} \cdot 37^{2} \)
\( g_1 \)  \(=\) \(60340715625/1369\)
\( g_2 \)  \(=\) \(509493125/1369\)
\( g_3 \)  \(=\) \(-13158875/12321\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : -1 : 1),\, (1 : -2 : 1)\)
Known points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (0 : 0 : 1),\, (0 : -1 : 1),\, (1 : -1 : 1),\, (1 : -2 : 1)\)
Known points: \((1 : -1 : 0),\, (1 : 1 : 0),\, (0 : -1 : 1),\, (0 : 1 : 1),\, (1 : -1 : 1),\, (1 : 1 : 1)\)

magma: [C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0]]; // minimal model
 
magma: [C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.228168\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.228168\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.228168\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.228168\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.228168\) \(\infty\)
\((1 : 1 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.228168\) \(\infty\)

2-torsion field: 9.9.1363532208525369.2

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.039045 \)
Real period: \( 21.98056 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.858248 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(4\) \(4\) \(1\) \(1 + 3 T + 3 T^{2}\)
\(37\) \(2\) \(2\) \(1\) \(1 + 10 T + 37 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.80.1 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.6.454965701877.2 with defining polynomial:
  \(x^{6} - 111 x^{4} - 296 x^{3} + 999 x^{2} + 3663 x + 2331\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{69588900}{7686973} b^{5} + \frac{195589215}{7686973} b^{4} + \frac{4154341500}{7686973} b^{3} + \frac{23045260005}{7686973} b^{2} + \frac{53213628105}{7686973} b + \frac{5891307795}{1098139}\)
  \(g_6 = \frac{7126269800796}{2636631739} b^{5} - \frac{78121867595337}{2636631739} b^{4} - \frac{220022576402778}{2636631739} b^{3} + \frac{1682832880289313}{2636631739} b^{2} + \frac{5514370690925493}{2636631739} b + \frac{502485786075150}{376661677}\)
   Conductor norm: 1

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 6.6.454965701877.2 with defining polynomial \(x^{6} - 111 x^{4} - 296 x^{3} + 999 x^{2} + 3663 x + 2331\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{37}) \) with generator \(-\frac{225}{22411} a^{5} + \frac{690}{22411} a^{4} + \frac{22859}{22411} a^{3} - \frac{4995}{22411} a^{2} - \frac{209457}{22411} a - \frac{87714}{22411}\) with minimal polynomial \(x^{2} - x - 9\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.110889.1 with generator \(-\frac{8}{921} a^{5} + \frac{15}{307} a^{4} + \frac{250}{307} a^{3} - \frac{2081}{921} a^{2} - \frac{2331}{307} a + \frac{1924}{307}\) with minimal polynomial \(x^{3} - 111 x - 37\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);