Properties

Label 107989.a.755923.1
Conductor $107989$
Discriminant $755923$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^2 + x + 1)y = -x^5 + 3x^4 - 4x^2$ (homogenize, simplify)
$y^2 + (x^2z + xz^2 + z^3)y = -x^5z + 3x^4z^2 - 4x^2z^4$ (dehomogenize, simplify)
$y^2 = -4x^5 + 13x^4 + 2x^3 - 13x^2 + 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, -4, 0, 3, -1]), R([1, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, -4, 0, 3, -1], R![1, 1, 1]);
 
sage: X = HyperellipticCurve(R([1, 2, -13, 2, 13, -4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(107989\) \(=\) \( 7 \cdot 15427 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(755923\) \(=\) \( 7^{2} \cdot 15427 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1204\) \(=\)  \( 2^{2} \cdot 7 \cdot 43 \)
\( I_4 \)  \(=\) \(45817\) \(=\)  \( 45817 \)
\( I_6 \)  \(=\) \(16295341\) \(=\)  \( 16295341 \)
\( I_{10} \)  \(=\) \(96758144\) \(=\)  \( 2^{7} \cdot 7^{2} \cdot 15427 \)
\( J_2 \)  \(=\) \(301\) \(=\)  \( 7 \cdot 43 \)
\( J_4 \)  \(=\) \(1866\) \(=\)  \( 2 \cdot 3 \cdot 311 \)
\( J_6 \)  \(=\) \(-3580\) \(=\)  \( - 2^{2} \cdot 5 \cdot 179 \)
\( J_8 \)  \(=\) \(-1139884\) \(=\)  \( - 2^{2} \cdot 17 \cdot 16763 \)
\( J_{10} \)  \(=\) \(755923\) \(=\)  \( 7^{2} \cdot 15427 \)
\( g_1 \)  \(=\) \(50423895949/15427\)
\( g_2 \)  \(=\) \(1038520434/15427\)
\( g_3 \)  \(=\) \(-6619420/15427\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : -1 : 1)\)
\((2 : 0 : 1)\) \((1 : -2 : 1)\) \((3 : -4 : 1)\) \((2 : -7 : 1)\) \((3 : -9 : 1)\) \((1 : -14 : 4)\)
\((-3 : 18 : 1)\) \((-3 : -25 : 1)\) \((1 : -70 : 4)\) \((-10 : 525 : 9)\) \((-10 : -1344 : 9)\)
Known points
\((1 : 0 : 0)\) \((0 : 0 : 1)\) \((-1 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((1 : -1 : 1)\)
\((2 : 0 : 1)\) \((1 : -2 : 1)\) \((3 : -4 : 1)\) \((2 : -7 : 1)\) \((3 : -9 : 1)\) \((1 : -14 : 4)\)
\((-3 : 18 : 1)\) \((-3 : -25 : 1)\) \((1 : -70 : 4)\) \((-10 : 525 : 9)\) \((-10 : -1344 : 9)\)
Known points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((1 : 1 : 1)\) \((3 : -5 : 1)\) \((3 : 5 : 1)\) \((2 : -7 : 1)\) \((2 : 7 : 1)\) \((-3 : -43 : 1)\)
\((-3 : 43 : 1)\) \((1 : -56 : 4)\) \((1 : 56 : 4)\) \((-10 : -1869 : 9)\) \((-10 : 1869 : 9)\)

magma: [C![-10,-1344,9],C![-10,525,9],C![-3,-25,1],C![-3,18,1],C![-1,-1,1],C![-1,0,1],C![0,-1,1],C![0,0,1],C![1,-70,4],C![1,-14,4],C![1,-2,1],C![1,-1,1],C![1,0,0],C![2,-7,1],C![2,0,1],C![3,-9,1],C![3,-4,1]]; // minimal model
 
magma: [C![-10,-1869,9],C![-10,1869,9],C![-3,-43,1],C![-3,43,1],C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-56,4],C![1,56,4],C![1,-1,1],C![1,1,1],C![1,0,0],C![2,-7,1],C![2,7,1],C![3,-5,1],C![3,5,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + 2xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(5xz^2 - 3z^3\) \(0.474918\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.271656\) \(\infty\)
\((0 : -1 : 1) + (2 : -7 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.271802\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + 2xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(5xz^2 - 3z^3\) \(0.474918\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.271656\) \(\infty\)
\((0 : -1 : 1) + (2 : -7 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - z^3\) \(0.271802\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - 2 \cdot(1 : 0 : 0)\) \(x^2 + 2xz - z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + 11xz^2 - 5z^3\) \(0.474918\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(x^2z + xz^2 - z^3\) \(0.271656\) \(\infty\)
\((0 : -1 : 1) + (2 : -7 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^2z - 5xz^2 - z^3\) \(0.271802\) \(\infty\)

2-torsion field: 5.5.246832.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.031585 \)
Real period: \( 15.46537 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.976963 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(7\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 3 T + 7 T^{2} )\)
\(15427\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 100 T + 15427 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);