Properties

Label 107163.a.321489.1
Conductor $107163$
Discriminant $321489$
Mordell-Weil group \(\Z \oplus \Z/{2}\Z\)
Sato-Tate group $J(E_6)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^6 + 2x^3 - 2$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^6 + 2x^3z^3 - 2z^6$ (dehomogenize, simplify)
$y^2 = -3x^6 + 10x^3 - 7$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-2, 0, 0, 2, 0, 0, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-2, 0, 0, 2, 0, 0, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-7, 0, 0, 10, 0, 0, -3]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(107163\) \(=\) \( 3^{7} \cdot 7^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(321489\) \(=\) \( 3^{8} \cdot 7^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(740\) \(=\)  \( 2^{2} \cdot 5 \cdot 37 \)
\( I_4 \)  \(=\) \(38745\) \(=\)  \( 3^{3} \cdot 5 \cdot 7 \cdot 41 \)
\( I_6 \)  \(=\) \(7033005\) \(=\)  \( 3^{2} \cdot 5 \cdot 7 \cdot 83 \cdot 269 \)
\( I_{10} \)  \(=\) \(-169344\) \(=\)  \( - 2^{7} \cdot 3^{3} \cdot 7^{2} \)
\( J_2 \)  \(=\) \(555\) \(=\)  \( 3 \cdot 5 \cdot 37 \)
\( J_4 \)  \(=\) \(-1695\) \(=\)  \( - 3 \cdot 5 \cdot 113 \)
\( J_6 \)  \(=\) \(-1705\) \(=\)  \( - 5 \cdot 11 \cdot 31 \)
\( J_8 \)  \(=\) \(-954825\) \(=\)  \( - 3 \cdot 5^{2} \cdot 29 \cdot 439 \)
\( J_{10} \)  \(=\) \(-321489\) \(=\)  \( - 3^{8} \cdot 7^{2} \)
\( g_1 \)  \(=\) \(-216699865625/1323\)
\( g_2 \)  \(=\) \(3577368125/3969\)
\( g_3 \)  \(=\) \(58353625/35721\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((1 : -1 : 1)\)
All points: \((1 : -1 : 1)\)
All points: \((1 : 0 : 1)\)

magma: [C![1,-1,1]]; // minimal model
 
magma: [C![1,0,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z/{2}\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(1.321347\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(xz^2\) \(1.321347\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0\) \(2\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 + xz + 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 2xz^2 + z^3\) \(1.321347\) \(\infty\)
\(D_0 - D_\infty\) \(x^2 + xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0\) \(2\)

2-torsion field: 3.1.11907.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(2\)
Regulator: \( 1.321347 \)
Real period: \( 3.316199 \)
Tamagawa product: \( 2 \)
Torsion order:\( 2 \)
Leading coefficient: \( 2.190926 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(7\) \(8\) \(2\) \(1\)
\(7\) \(2\) \(2\) \(1\) \(1 + 4 T + 7 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.1 yes
\(3\) 3.960.3 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_6)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.2.2977309629.4 with defining polynomial:
  \(x^{6} - 84 x^{3} + 63\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = \frac{5}{2} b^{4} + \frac{195}{2} b\)
  \(g_6 = 630 b^{3} - 3699\)
   Conductor norm: 9
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{35}{2} b^{4} + \frac{2955}{2} b\)
  \(g_6 = -630 b^{3} + 49221\)
   Conductor norm: 9

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} - 6 x^{11} + 21 x^{10} - 50 x^{9} + 90 x^{8} - 126 x^{7} + 267 x^{6} - 504 x^{5} - 855 x^{4} + 2470 x^{3} - 924 x^{2} - 384 x + 4096\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{427}{768960} a^{11} + \frac{4697}{1537920} a^{10} - \frac{17143}{1537920} a^{9} + \frac{3493}{128160} a^{8} - \frac{14657}{256320} a^{7} + \frac{12089}{128160} a^{6} - \frac{7133}{32040} a^{5} + \frac{189203}{512640} a^{4} + \frac{102809}{512640} a^{3} - \frac{489307}{768960} a^{2} + \frac{166061}{384480} a + \frac{4816}{12015}\) with minimal polynomial \(x^{2} - x + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_6$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{21}) \) with generator \(-\frac{1}{1152} a^{10} + \frac{5}{1152} a^{9} - \frac{1}{72} a^{8} + \frac{17}{576} a^{7} - \frac{7}{144} a^{6} + \frac{35}{576} a^{5} - \frac{133}{1152} a^{4} + \frac{179}{1152} a^{3} + \frac{709}{576} a^{2} - \frac{125}{96} a + \frac{1}{3}\) with minimal polynomial \(x^{2} - x - 5\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-7}) \) with generator \(-\frac{7}{16020} a^{11} + \frac{77}{32040} a^{10} - \frac{989}{96120} a^{9} + \frac{151}{5340} a^{8} - \frac{119}{1780} a^{7} + \frac{476}{4005} a^{6} - \frac{112}{445} a^{5} + \frac{4123}{10680} a^{4} - \frac{7433}{32040} a^{3} + \frac{49}{8010} a^{2} + \frac{5968}{4005} a - \frac{2827}{12015}\) with minimal polynomial \(x^{2} - x + 2\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.11907.1 with generator \(-\frac{7}{3456} a^{10} + \frac{35}{3456} a^{9} - \frac{1}{24} a^{8} + \frac{61}{576} a^{7} - \frac{35}{144} a^{6} + \frac{77}{192} a^{5} - \frac{1057}{1152} a^{4} + \frac{1463}{1152} a^{3} - \frac{101}{192} a^{2} - \frac{49}{864} a + \frac{139}{27}\) with minimal polynomial \(x^{3} - 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.11907.1 with generator \(-\frac{917}{1537920} a^{11} + \frac{6601}{1537920} a^{10} - \frac{643}{32040} a^{9} + \frac{16343}{256320} a^{8} - \frac{10129}{64080} a^{7} + \frac{26663}{85440} a^{6} - \frac{303779}{512640} a^{5} + \frac{536389}{512640} a^{4} - \frac{24661}{28480} a^{3} + \frac{35917}{384480} a^{2} + \frac{45569}{12015} a - \frac{17669}{4005}\) with minimal polynomial \(x^{3} - 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.11907.1 with generator \(\frac{917}{1537920} a^{11} - \frac{581}{256320} a^{10} + \frac{15289}{1537920} a^{9} - \frac{5663}{256320} a^{8} + \frac{4457}{85440} a^{7} - \frac{17689}{256320} a^{6} + \frac{98189}{512640} a^{5} - \frac{917}{7120} a^{4} - \frac{207137}{512640} a^{3} + \frac{332671}{768960} a^{2} - \frac{478801}{128160} a - \frac{8848}{12015}\) with minimal polynomial \(x^{3} - 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}, \sqrt{-7})\) with generator \(\frac{91}{1537920} a^{11} - \frac{73}{96120} a^{10} + \frac{3997}{1537920} a^{9} - \frac{1649}{256320} a^{8} + \frac{2543}{256320} a^{7} - \frac{343}{28480} a^{6} + \frac{903}{56960} a^{5} - \frac{4207}{85440} a^{4} - \frac{71041}{512640} a^{3} + \frac{720263}{768960} a^{2} - \frac{46879}{384480} a - \frac{1819}{12015}\) with minimal polynomial \(x^{4} - x^{3} - x^{2} - 2 x + 4\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.425329947.3 with generator \(-\frac{917}{4613760} a^{11} + \frac{2429}{1153440} a^{10} - \frac{46439}{4613760} a^{9} + \frac{27023}{768960} a^{8} - \frac{67661}{768960} a^{7} + \frac{142289}{768960} a^{6} - \frac{509369}{1537920} a^{5} + \frac{503377}{768960} a^{4} - \frac{1094933}{1537920} a^{3} + \frac{476339}{2306880} a^{2} + \frac{1480013}{1153440} a - \frac{114862}{36045}\) with minimal polynomial \(x^{6} + 147\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.2.2977309629.4 with generator \(\frac{67}{128160} a^{11} - \frac{1919}{512640} a^{10} + \frac{6671}{512640} a^{9} - \frac{2009}{64080} a^{8} + \frac{4609}{85440} a^{7} - \frac{259}{3560} a^{6} + \frac{28679}{256320} a^{5} - \frac{16667}{56960} a^{4} - \frac{98933}{170880} a^{3} + \frac{185533}{85440} a^{2} + \frac{53323}{128160} a - \frac{5582}{4005}\) with minimal polynomial \(x^{6} - 84 x^{3} + 63\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.2.2977309629.4 with generator \(-\frac{67}{128160} a^{11} + \frac{343}{170880} a^{10} - \frac{2221}{512640} a^{9} + \frac{229}{64080} a^{8} + \frac{1303}{256320} a^{7} - \frac{98}{4005} a^{6} + \frac{2471}{256320} a^{5} - \frac{53807}{512640} a^{4} + \frac{626989}{512640} a^{3} - \frac{181909}{256320} a^{2} - \frac{280273}{128160} a + \frac{1577}{4005}\) with minimal polynomial \(x^{6} - 84 x^{3} + 63\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.2.2977309629.4 with generator \(\frac{1}{576} a^{10} - \frac{5}{576} a^{9} + \frac{1}{36} a^{8} - \frac{17}{288} a^{7} + \frac{7}{72} a^{6} - \frac{35}{288} a^{5} + \frac{229}{576} a^{4} - \frac{371}{576} a^{3} - \frac{421}{288} a^{2} + \frac{85}{48} a + 1\) with minimal polynomial \(x^{6} - 84 x^{3} + 63\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.0.992436543.1 with generator \(\frac{427}{768960} a^{11} - \frac{4697}{1537920} a^{10} + \frac{17143}{1537920} a^{9} - \frac{3493}{128160} a^{8} + \frac{14657}{256320} a^{7} - \frac{12089}{128160} a^{6} + \frac{7133}{32040} a^{5} - \frac{189203}{512640} a^{4} - \frac{102809}{512640} a^{3} + \frac{489307}{768960} a^{2} + \frac{218419}{384480} a - \frac{4816}{12015}\) with minimal polynomial \(x^{6} + 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.992436543.1 with generator \(\frac{427}{1537920} a^{11} - \frac{791}{1537920} a^{10} + \frac{49}{96120} a^{9} + \frac{1847}{256320} a^{8} - \frac{1561}{64080} a^{7} + \frac{19061}{256320} a^{6} - \frac{45731}{512640} a^{5} + \frac{140581}{512640} a^{4} - \frac{188461}{256320} a^{3} + \frac{31213}{384480} a^{2} + \frac{9761}{12015} a - \frac{39343}{12015}\) with minimal polynomial \(x^{6} + 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.992436543.1 with generator \(-\frac{427}{1537920} a^{11} + \frac{217}{85440} a^{10} - \frac{5453}{512640} a^{9} + \frac{8833}{256320} a^{8} - \frac{6967}{85440} a^{7} + \frac{14413}{85440} a^{6} - \frac{159859}{512640} a^{5} + \frac{13741}{21360} a^{4} - \frac{30457}{56960} a^{3} - \frac{426881}{768960} a^{2} + \frac{3479}{14240} a - \frac{11509}{4005}\) with minimal polynomial \(x^{6} + 63\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);