Minimal equation
Minimal equation
Simplified equation
| $y^2 + y = x^5 - 23x^3 + 69x^2 - 77x + 30$ | (homogenize, simplify) |
| $y^2 + z^3y = x^5z - 23x^3z^3 + 69x^2z^4 - 77xz^5 + 30z^6$ | (dehomogenize, simplify) |
| $y^2 = 4x^5 - 92x^3 + 276x^2 - 308x + 121$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(10681\) | \(=\) | \( 11 \cdot 971 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-117491\) | \(=\) | \( - 11^{2} \cdot 971 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(376\) | \(=\) | \( 2^{3} \cdot 47 \) |
| \( I_4 \) | \(=\) | \(-7952\) | \(=\) | \( - 2^{4} \cdot 7 \cdot 71 \) |
| \( I_6 \) | \(=\) | \(-514680\) | \(=\) | \( - 2^{3} \cdot 3 \cdot 5 \cdot 4289 \) |
| \( I_{10} \) | \(=\) | \(-469964\) | \(=\) | \( - 2^{2} \cdot 11^{2} \cdot 971 \) |
| \( J_2 \) | \(=\) | \(188\) | \(=\) | \( 2^{2} \cdot 47 \) |
| \( J_4 \) | \(=\) | \(2798\) | \(=\) | \( 2 \cdot 1399 \) |
| \( J_6 \) | \(=\) | \(3356\) | \(=\) | \( 2^{2} \cdot 839 \) |
| \( J_8 \) | \(=\) | \(-1799469\) | \(=\) | \( - 3^{3} \cdot 7 \cdot 9521 \) |
| \( J_{10} \) | \(=\) | \(-117491\) | \(=\) | \( - 11^{2} \cdot 971 \) |
| \( g_1 \) | \(=\) | \(-234849287168/117491\) | ||
| \( g_2 \) | \(=\) | \(-18591792256/117491\) | ||
| \( g_3 \) | \(=\) | \(-118614464/117491\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : 0 : 1)\) | \((1 : -1 : 1)\) | \((2 : 0 : 1)\) | \((2 : -1 : 1)\) | \((0 : 5 : 1)\) |
| \((0 : -6 : 1)\) | \((3 : 6 : 1)\) | \((3 : -7 : 1)\) | \((-3 : 35 : 1)\) | \((-3 : -36 : 1)\) | |
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : 0 : 1)\) | \((1 : -1 : 1)\) | \((2 : 0 : 1)\) | \((2 : -1 : 1)\) | \((0 : 5 : 1)\) |
| \((0 : -6 : 1)\) | \((3 : 6 : 1)\) | \((3 : -7 : 1)\) | \((-3 : 35 : 1)\) | \((-3 : -36 : 1)\) | |
| Known points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 1)\) | \((1 : 1 : 1)\) | \((2 : -1 : 1)\) | \((2 : 1 : 1)\) | \((0 : -11 : 1)\) |
| \((0 : 11 : 1)\) | \((3 : -13 : 1)\) | \((3 : 13 : 1)\) | \((-3 : -71 : 1)\) | \((-3 : 71 : 1)\) | |
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -6 : 1) + (2 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(3xz^2 - 6z^3\) | \(0.309259\) | \(\infty\) |
| \((0 : -6 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(5xz^2 - 6z^3\) | \(0.068272\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -6 : 1) + (2 : 0 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(3xz^2 - 6z^3\) | \(0.309259\) | \(\infty\) |
| \((0 : -6 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(5xz^2 - 6z^3\) | \(0.068272\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : -11 : 1) + (2 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(6xz^2 - 11z^3\) | \(0.309259\) | \(\infty\) |
| \((0 : -11 : 1) + (1 : -1 : 1) - 2 \cdot(1 : 0 : 0)\) | \(x (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(10xz^2 - 11z^3\) | \(0.068272\) | \(\infty\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.020227 \) |
| Real period: | \( 10.93482 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 0.442376 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(11\) | \(1\) | \(2\) | \(2\) | \(-1\) | \(( 1 - T )( 1 + 5 T + 11 T^{2} )\) | yes | |
| \(971\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 51 T + 971 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.6.1 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).