Properties

Label 104976.a.104976.1
Conductor $104976$
Discriminant $104976$
Mordell-Weil group \(\Z\)
Sato-Tate group $J(E_6)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = -x^6 - 2x^3 - 1$ (homogenize, simplify)
$y^2 + z^3y = -x^6 - 2x^3z^3 - z^6$ (dehomogenize, simplify)
$y^2 = -4x^6 - 8x^3 - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 0, 0, -2, 0, 0, -1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 0, 0, -2, 0, 0, -1], R![1]);
 
sage: X = HyperellipticCurve(R([-3, 0, 0, -8, 0, 0, -4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(104976\) \(=\) \( 2^{4} \cdot 3^{8} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(104976\) \(=\) \( 2^{4} \cdot 3^{8} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(104\) \(=\)  \( 2^{3} \cdot 13 \)
\( I_4 \)  \(=\) \(837\) \(=\)  \( 3^{3} \cdot 31 \)
\( I_6 \)  \(=\) \(21105\) \(=\)  \( 3^{2} \cdot 5 \cdot 7 \cdot 67 \)
\( I_{10} \)  \(=\) \(-54\) \(=\)  \( - 2 \cdot 3^{3} \)
\( J_2 \)  \(=\) \(312\) \(=\)  \( 2^{3} \cdot 3 \cdot 13 \)
\( J_4 \)  \(=\) \(-966\) \(=\)  \( - 2 \cdot 3 \cdot 7 \cdot 23 \)
\( J_6 \)  \(=\) \(-976\) \(=\)  \( - 2^{4} \cdot 61 \)
\( J_8 \)  \(=\) \(-309417\) \(=\)  \( - 3 \cdot 17 \cdot 6067 \)
\( J_{10} \)  \(=\) \(-104976\) \(=\)  \( - 2^{4} \cdot 3^{8} \)
\( g_1 \)  \(=\) \(-760408064/27\)
\( g_2 \)  \(=\) \(22637888/81\)
\( g_3 \)  \(=\) \(659776/729\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points: \((-1 : 0 : 1),\, (-1 : -1 : 1)\)
All points: \((-1 : 0 : 1),\, (-1 : -1 : 1)\)
All points: \((-1 : -1 : 1),\, (-1 : 1 : 1)\)

magma: [C![-1,-1,1],C![-1,0,1]]; // minimal model
 
magma: [C![-1,-1,1],C![-1,1,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.539917\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.539917\) \(\infty\)
Generator $D_0$ Height Order
\(D_0 - D_\infty\) \(x^2 - xz + z^2\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.539917\) \(\infty\)

2-torsion field: 9.1.24794911296.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(1\)
Mordell-Weil rank: \(1\)
2-Selmer rank:\(1\)
Regulator: \( 0.539917 \)
Real period: \( 3.982188 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 2.150054 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(4\) \(1\) \(1 + 2 T^{2}\)
\(3\) \(8\) \(8\) \(1\) \(1\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.1 no
\(3\) 3.960.3 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $J(E_6)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 6.2.45349632.3 with defining polynomial:
  \(x^{6} - 18 x^{3} + 6\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{558}{5} b^{5} + \frac{9882}{5} b^{2}\)
  \(g_6 = -\frac{9072}{5} b^{3} + \frac{148068}{5}\)
   Conductor norm: 81
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = \frac{18}{5} b^{5} + \frac{378}{5} b^{2}\)
  \(g_6 = \frac{9072}{5} b^{3} - \frac{15228}{5}\)
   Conductor norm: 81

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{12} + 36\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{-3}) \) with generator \(-\frac{1}{24} a^{9} - \frac{1}{4} a^{3} + \frac{1}{2}\) with minimal polynomial \(x^{2} - x + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_6$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{-1}) \) with generator \(-\frac{1}{6} a^{6}\) with minimal polynomial \(x^{2} + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\sqrt{3}) \) with generator \(\frac{1}{12} a^{9} - \frac{1}{2} a^{3}\) with minimal polynomial \(x^{2} - 3\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_3)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.972.2 with generator \(-\frac{1}{24} a^{11} - \frac{1}{12} a^{8} + \frac{1}{4} a^{5}\) with minimal polynomial \(x^{3} - 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.972.2 with generator \(\frac{1}{24} a^{11} - \frac{1}{12} a^{8} - \frac{1}{4} a^{5}\) with minimal polynomial \(x^{3} - 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.1.972.2 with generator \(\frac{1}{6} a^{8}\) with minimal polynomial \(x^{3} - 6\):

\(\End (J_{F})\)\(\simeq\)\(\Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R\)
  Sato Tate group: $J(E_2)$
  Not of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) \(\Q(\zeta_{12})\) with generator \(\frac{1}{24} a^{9} + \frac{1}{12} a^{6} - \frac{1}{4} a^{3}\) with minimal polynomial \(x^{4} - x^{2} + 1\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.2834352.2 with generator \(-\frac{1}{6} a^{7} + a\) with minimal polynomial \(x^{6} + 48\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.15116544.3 with generator \(-a^{2}\) with minimal polynomial \(x^{6} + 36\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.15116544.3 with generator \(\frac{1}{24} a^{11} + \frac{1}{4} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{6} + 36\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.0.15116544.3 with generator \(-\frac{1}{24} a^{11} - \frac{1}{4} a^{5} + \frac{1}{2} a^{2}\) with minimal polynomial \(x^{6} + 36\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\sqrt{3}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 6.2.45349632.3 with generator \(\frac{1}{24} a^{10} - \frac{1}{6} a^{7} + \frac{1}{4} a^{4} + \frac{1}{2} a\) with minimal polynomial \(x^{6} - 18 x^{3} + 6\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.2.45349632.3 with generator \(-\frac{1}{24} a^{10} + \frac{1}{12} a^{7} + \frac{1}{4} a^{4} - a\) with minimal polynomial \(x^{6} - 18 x^{3} + 6\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

Over subfield \(F \simeq \) 6.2.45349632.3 with generator \(-\frac{1}{12} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a\) with minimal polynomial \(x^{6} - 18 x^{3} + 6\):

\(\End (J_{F})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\R \times \R\)
  Sato Tate group: $J(E_1)$
  Of \(\GL_2\)-type, not simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);