Properties

Label 104294.a.208588.1
Conductor $104294$
Discriminant $208588$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^5 - 4x^4 + 4x^2 - 2x$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^5z - 4x^4z^2 + 4x^2z^4 - 2xz^5$ (dehomogenize, simplify)
$y^2 = x^6 + 4x^5 - 16x^4 + 2x^3 + 16x^2 - 8x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -2, 4, 0, -4, 1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -2, 4, 0, -4, 1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, -8, 16, 2, -16, 4, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(104294\) \(=\) \( 2 \cdot 52147 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(208588\) \(=\) \( 2^{2} \cdot 52147 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(1300\) \(=\)  \( 2^{2} \cdot 5^{2} \cdot 13 \)
\( I_4 \)  \(=\) \(55225\) \(=\)  \( 5^{2} \cdot 47^{2} \)
\( I_6 \)  \(=\) \(20649037\) \(=\)  \( 20649037 \)
\( I_{10} \)  \(=\) \(26699264\) \(=\)  \( 2^{9} \cdot 52147 \)
\( J_2 \)  \(=\) \(325\) \(=\)  \( 5^{2} \cdot 13 \)
\( J_4 \)  \(=\) \(2100\) \(=\)  \( 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
\( J_6 \)  \(=\) \(404\) \(=\)  \( 2^{2} \cdot 101 \)
\( J_8 \)  \(=\) \(-1069675\) \(=\)  \( - 5^{2} \cdot 42787 \)
\( J_{10} \)  \(=\) \(208588\) \(=\)  \( 2^{2} \cdot 52147 \)
\( g_1 \)  \(=\) \(3625908203125/208588\)
\( g_2 \)  \(=\) \(18022265625/52147\)
\( g_3 \)  \(=\) \(10668125/52147\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -2 : 2)\) \((2 : -4 : 1)\) \((2 : -5 : 1)\) \((1 : -7 : 2)\) \((1 : -13 : 3)\)
\((1 : -15 : 3)\) \((3 : -15 : 4)\) \((3 : -76 : 4)\) \((42 : -13908 : 17)\) \((42 : -65093 : 17)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((1 : -2 : 2)\) \((2 : -4 : 1)\) \((2 : -5 : 1)\) \((1 : -7 : 2)\) \((1 : -13 : 3)\)
\((1 : -15 : 3)\) \((3 : -15 : 4)\) \((3 : -76 : 4)\) \((42 : -13908 : 17)\) \((42 : -65093 : 17)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-1 : -2 : 1)\)
\((-1 : 2 : 1)\) \((2 : -1 : 1)\) \((2 : 1 : 1)\) \((1 : -2 : 3)\) \((1 : 2 : 3)\) \((1 : -5 : 2)\)
\((1 : 5 : 2)\) \((3 : -61 : 4)\) \((3 : 61 : 4)\) \((42 : -51185 : 17)\) \((42 : 51185 : 17)\)

magma: [C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-15,3],C![1,-13,3],C![1,-7,2],C![1,-2,2],C![1,-1,0],C![1,-1,1],C![1,0,0],C![2,-5,1],C![2,-4,1],C![3,-76,4],C![3,-15,4],C![42,-65093,17],C![42,-13908,17]]; // minimal model
 
magma: [C![-1,-2,1],C![-1,2,1],C![0,-1,1],C![0,1,1],C![1,-2,3],C![1,2,3],C![1,-5,2],C![1,5,2],C![1,-1,0],C![1,0,1],C![1,1,0],C![2,-1,1],C![2,1,1],C![3,-61,4],C![3,61,4],C![42,-51185,17],C![42,51185,17]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.829863\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.311314\) \(\infty\)
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.109942\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -1 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.829863\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.311314\) \(\infty\)
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.109942\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : -2 : 1) + (0 : -1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.829863\) \(\infty\)
\((0 : -1 : 1) - (1 : 1 : 0)\) \(z x\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 - z^3\) \(0.311314\) \(\infty\)
\((0 : -1 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - z^3\) \(0.109942\) \(\infty\)

2-torsion field: 5.5.834352.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.025629 \)
Real period: \( 18.79689 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.963526 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + T + 2 T^{2} )\)
\(52147\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 318 T + 52147 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.6.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);