Properties

Label 101833.a.101833.1
Conductor $101833$
Discriminant $-101833$
Mordell-Weil group \(\Z \oplus \Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = -x^4 + x^3 - 6x + 6$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = -x^4z^2 + x^3z^3 - 6xz^5 + 6z^6$ (dehomogenize, simplify)
$y^2 = x^6 - 4x^4 + 6x^3 - 24x + 25$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([6, -6, 0, 1, -1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![6, -6, 0, 1, -1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([25, -24, 0, 6, -4, 0, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(101833\) \(=\) \( 101833 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-101833\) \(=\) \( -101833 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(2892\) \(=\)  \( 2^{2} \cdot 3 \cdot 241 \)
\( I_4 \)  \(=\) \(140937\) \(=\)  \( 3 \cdot 109 \cdot 431 \)
\( I_6 \)  \(=\) \(148622235\) \(=\)  \( 3 \cdot 5 \cdot 311 \cdot 31859 \)
\( I_{10} \)  \(=\) \(13034624\) \(=\)  \( 2^{7} \cdot 101833 \)
\( J_2 \)  \(=\) \(723\) \(=\)  \( 3 \cdot 241 \)
\( J_4 \)  \(=\) \(15908\) \(=\)  \( 2^{2} \cdot 41 \cdot 97 \)
\( J_6 \)  \(=\) \(-9984\) \(=\)  \( - 2^{8} \cdot 3 \cdot 13 \)
\( J_8 \)  \(=\) \(-65070724\) \(=\)  \( - 2^{2} \cdot 16267681 \)
\( J_{10} \)  \(=\) \(101833\) \(=\)  \( 101833 \)
\( g_1 \)  \(=\) \(197556574179843/101833\)
\( g_2 \)  \(=\) \(6012159229836/101833\)
\( g_3 \)  \(=\) \(-5218926336/101833\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((0 : 2 : 1)\) \((-2 : 1 : 1)\) \((1 : -2 : 1)\)
\((2 : -2 : 1)\) \((0 : -3 : 1)\) \((-4 : 5 : 1)\) \((-2 : 6 : 1)\) \((2 : -7 : 1)\) \((3 : -15 : 2)\)
\((3 : -20 : 2)\) \((-4 : 58 : 1)\) \((41 : -5696 : 40)\) \((41 : -127225 : 40)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((1 : 0 : 1)\) \((0 : 2 : 1)\) \((-2 : 1 : 1)\) \((1 : -2 : 1)\)
\((2 : -2 : 1)\) \((0 : -3 : 1)\) \((-4 : 5 : 1)\) \((-2 : 6 : 1)\) \((2 : -7 : 1)\) \((3 : -15 : 2)\)
\((3 : -20 : 2)\) \((-4 : 58 : 1)\) \((41 : -5696 : 40)\) \((41 : -127225 : 40)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((1 : -2 : 1)\) \((1 : 2 : 1)\) \((0 : -5 : 1)\) \((0 : 5 : 1)\)
\((-2 : -5 : 1)\) \((-2 : 5 : 1)\) \((2 : -5 : 1)\) \((2 : 5 : 1)\) \((3 : -5 : 2)\) \((3 : 5 : 2)\)
\((-4 : -53 : 1)\) \((-4 : 53 : 1)\) \((41 : -121529 : 40)\) \((41 : 121529 : 40)\)

magma: [C![-4,5,1],C![-4,58,1],C![-2,1,1],C![-2,6,1],C![0,-3,1],C![0,2,1],C![1,-2,1],C![1,-1,0],C![1,0,0],C![1,0,1],C![2,-7,1],C![2,-2,1],C![3,-20,2],C![3,-15,2],C![41,-127225,40],C![41,-5696,40]]; // minimal model
 
magma: [C![-4,-53,1],C![-4,53,1],C![-2,-5,1],C![-2,5,1],C![0,-5,1],C![0,5,1],C![1,-2,1],C![1,-1,0],C![1,1,0],C![1,2,1],C![2,-5,1],C![2,5,1],C![3,-5,2],C![3,5,2],C![41,-121529,40],C![41,121529,40]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -3 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - 3z^3\) \(0.902176\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.494473\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.113953\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -3 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - 3z^3\) \(0.902176\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.494473\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 0 : 0)\) \(x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(-2z^3\) \(0.113953\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -5 : 1) + (1 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + 2xz^2 - 5z^3\) \(0.902176\) \(\infty\)
\((1 : -2 : 1) - (1 : -1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.494473\) \(\infty\)
\(D_0 - (1 : -1 : 0) - (1 : 1 : 0)\) \(x^2 - 2z^2\) \(=\) \(0,\) \(y\) \(=\) \(x^3 - 3z^3\) \(0.113953\) \(\infty\)

2-torsion field: 6.0.6517312.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(3\)   (upper bound)
Mordell-Weil rank: \(3\)
2-Selmer rank:\(3\)
Regulator: \( 0.047162 \)
Real period: \( 19.00797 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.896464 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(101833\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 + 78 T + 101833 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.10.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);