# Properties

 Label 100017.a Sato-Tate group $\mathrm{USp}(4)$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q$$ $$\overline{\Q}$$-simple yes $$\mathrm{GL}_2$$-type no

# Related objects

## Genus 2 curves in isogeny class 100017.a

Label Equation
100017.a.300051.1 $$y^2 + (x^3 + x + 1)y = x^3 + x - 1$$

## L-function data

Analytic rank:$$0$$
Mordell-Weil rank:$$0$$

Prime L-Factor
$$3$$$$( 1 - T )( 1 + T )$$
$$11113$$$$( 1 - T )( 1 + 145 T + 11113 T^{2} )$$

Good L-factors:
Prime L-Factor
$$2$$$$1 - T + T^{2} - 2 T^{3} + 4 T^{4}$$
$$5$$$$1 - 2 T + 4 T^{2} - 10 T^{3} + 25 T^{4}$$
$$7$$$$( 1 - 5 T + 7 T^{2} )( 1 + 3 T + 7 T^{2} )$$
$$11$$$$1 - 3 T + 10 T^{2} - 33 T^{3} + 121 T^{4}$$
$$13$$$$( 1 - 2 T + 13 T^{2} )( 1 + 3 T + 13 T^{2} )$$
$$17$$$$1 - 2 T - 8 T^{2} - 34 T^{3} + 289 T^{4}$$
$$19$$$$1 - 2 T - 13 T^{2} - 38 T^{3} + 361 T^{4}$$
$$23$$$$1 + 4 T + 37 T^{2} + 92 T^{3} + 529 T^{4}$$
$$29$$$$1 - 6 T + 13 T^{2} - 174 T^{3} + 841 T^{4}$$
$\cdots$$\cdots$

## Sato-Tate group

$$\mathrm{ST} =$$ $\mathrm{USp}(4)$

## Endomorphisms of the Jacobian

Not of $$\GL_2$$-type over $$\Q$$

Endomorphism algebra over $$\Q$$:

 $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.