Results (displaying matches 1-50 of 349) Next
| Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
|---|---|---|---|---|---|---|
| 1T1 | Trivial | 1 | 1 | Yes | ||
| 2T1 | $C_2$ | 2 | -1 | Yes | ||
| 3T1 | $C_3$ | 3 | 1 | Yes | ||
| 3T2 | $S_3$ | 6 | -1 | Yes | 6T2 | |
| 4T4 | $A_4$ | 12 | 1 | Yes | 6T4, 12T4 | |
| 4T5 | $S_4$ | 24 | -1 | Yes | 6T7, 6T8, 8T14, 12T8, 12T9, 24T10 | |
| 5T1 | $C_5$ | 5 | 1 | Yes | ||
| 5T2 | $D_{5}$ | 10 | 1 | Yes | 10T2 | |
| 5T3 | $F_5$ | 20 | -1 | Yes | 10T4, 20T5 | |
| 5T4 | $A_5$ | 60 | 1 | No | 6T12, 10T7, 12T33, 15T5, 20T15, 30T9 | |
| 5T5 | $S_5$ | 120 | -1 | No | 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 | |
| 6T12 | $\PSL(2,5)$ | 60 | 1 | No | 5T4, 10T7, 12T33, 15T5, 20T15, 30T9 | |
| 6T14 | $\PGL(2,5)$ | 120 | -1 | No | 5T5, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 | |
| 6T15 | $A_6$ | 360 | 1 | No | 6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49 | |
| 6T16 | $S_6$ | 720 | -1 | No | 6T16, 10T32, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96 | |
| 7T1 | $C_7$ | 7 | 1 | Yes | ||
| 7T2 | $D_{7}$ | 14 | -1 | Yes | 14T2 | |
| 7T3 | $C_7:C_3$ | 21 | 1 | Yes | 21T2 | |
| 7T4 | $F_7$ | 42 | -1 | Yes | 14T4, 21T4, 42T4 | |
| 7T5 | $\GL(3,2)$ | 168 | 1 | No | 7T5, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2 | |
| 7T6 | $A_7$ | 2520 | 1 | No | 15T47 x 2, 21T33, 35T28, 42T294, 42T299 | |
| 7T7 | $S_7$ | 5040 | -1 | No | 14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418 | |
| 8T25 | $C_2^3:C_7$ | 56 | 1 | Yes | 14T6, 28T11 | |
| 8T36 | $C_2^3:(C_7: C_3)$ | 168 | 1 | Yes | 14T11, 24T283, 28T27, 42T26 | |
| 8T37 | $\PSL(2,7)$ | 168 | 1 | No | 7T5 x 2, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2 | |
| 8T43 | $\PGL(2,7)$ | 336 | -1 | No | 14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83 | |
| 8T48 | $C_2^3:\GL(3,2)$ | 1344 | 1 | No | 8T48, 14T34 x 2, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2 | |
| 8T49 | $A_8$ | 20160 | 1 | No | 15T72 x 2, 28T433, 35T36 | |
| 8T50 | $S_8$ | 40320 | -1 | No | 16T1838, 28T502, 30T1153, 35T44 | |
| 9T9 | $C_3^2:C_4$ | 36 | 1 | Yes | 6T10 x 2, 12T17 x 2, 18T10, 36T14 | |
| 9T14 | $C_3^2:Q_8$ | 72 | 1 | Yes | 12T47, 18T35 x 3, 24T82, 36T55 | |
| 9T15 | $C_3^2:C_8$ | 72 | -1 | Yes | 12T46, 18T28, 24T81, 36T49 | |
| 9T16 | $S_3^2:C_2$ | 72 | -1 | Yes | 6T13 x 2, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2 | |
| 9T19 | $(C_3^2:C_8):C_2$ | 144 | -1 | Yes | 12T84, 18T68, 18T71, 18T73, 24T278, 24T279, 24T280, 36T171, 36T172, 36T175 | |
| 9T23 | $(C_3^2:Q_8):C_3$ | 216 | 1 | Yes | 12T122, 24T562, 24T569, 27T82, 36T287, 36T309 | |
| 9T26 | $((C_3^2:Q_8):C_3):C_2$ | 432 | -1 | Yes | 12T157, 18T157, 24T1325, 24T1326, 24T1327, 24T1334, 27T139, 36T689, 36T709 | |
| 9T27 | $\PSL(2,8)$ | 504 | 1 | No | 28T70, 36T712 | |
| 9T32 | $\mathrm{P}\Gamma\mathrm{L}(2,8)$ | 1512 | 1 | No | 27T391, 28T165, 36T2342 | |
| 9T33 | $A_9$ | 181440 | 1 | No | 36T23796 | |
| 9T34 | $S_9$ | 362880 | -1 | No | 18T887, 36T28590 | |
| 10T7 | $A_{5}$ | 60 | 1 | No | 5T4, 6T12, 12T33, 15T5, 20T15, 30T9 | |
| 10T13 | $S_5$ | 120 | -1 | No | 5T5, 6T14, 10T12, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 | |
| 10T26 | $\PSL(2,9)$ | 360 | 1 | No | 6T15 x 2, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49 | |
| 10T30 | $\PGL(2,9)$ | 720 | -1 | No | 12T182, 20T146, 30T171, 36T1254, 40T590, 45T110 | |
| 10T31 | $M_{10}$ | 720 | 1 | No | 12T181, 20T148, 20T150 x 2, 30T162, 36T1253, 40T591, 45T109 | |
| 10T32 | $S_{6}$ | 720 | -1 | No | 6T16 x 2, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96 | |
| 10T35 | $(A_6 : C_2) : C_2$ | 1440 | -1 | No | 12T220, 20T201, 20T204, 20T208, 24T2960, 30T264, 36T2341, 40T1198, 40T1199, 40T1201, 45T187 | |
| 10T44 | $A_{10}$ | 1814400 | 1 | No | 45T1982 | |
| 10T45 | $S_{10}$ | 3628800 | -1 | No | 20T1007, 45T2246 | |
| 11T1 | $C_{11}$ | 11 | 1 | Yes |
Results are complete for degrees $\leq 23$.