Results (displaying matches 1-50 of at least 5000) Next
| Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
|---|---|---|---|---|---|---|
| 1T1 | Trivial | 1 | 1 | Yes | ||
| 3T1 | $C_3$ | 3 | 1 | Yes | ||
| 4T2 | $C_2^2$ | 4 | 1 | Yes | $C_2$ x 3 | |
| 4T4 | $A_4$ | 12 | 1 | Yes | 6T4, 12T4 | |
| 5T1 | $C_5$ | 5 | 1 | Yes | ||
| 5T2 | $D_{5}$ | 10 | 1 | Yes | 10T2 | |
| 5T4 | $A_5$ | 60 | 1 | No | 6T12, 10T7, 12T33, 15T5, 20T15, 30T9 | |
| 6T4 | $A_4$ | 12 | 1 | Yes | $C_3$ | 4T4, 12T4 |
| 6T7 | $S_4$ | 24 | 1 | Yes | $S_3$ | 4T5, 6T8, 8T14, 12T8, 12T9, 24T10 |
| 6T10 | $C_3^2:C_4$ | 36 | 1 | Yes | $C_2$ | 6T10, 9T9, 12T17 x 2, 18T10, 36T14 |
| 6T12 | $\PSL(2,5)$ | 60 | 1 | No | 5T4, 10T7, 12T33, 15T5, 20T15, 30T9 | |
| 6T15 | $A_6$ | 360 | 1 | No | 6T15, 10T26, 15T20 x 2, 20T89, 30T88 x 2, 36T555, 40T304, 45T49 | |
| 7T1 | $C_7$ | 7 | 1 | Yes | ||
| 7T3 | $C_7:C_3$ | 21 | 1 | Yes | 21T2 | |
| 7T5 | $\GL(3,2)$ | 168 | 1 | No | 7T5, 8T37, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2 | |
| 7T6 | $A_7$ | 2520 | 1 | No | 15T47 x 2, 21T33, 35T28, 42T294, 42T299 | |
| 8T2 | $C_4\times C_2$ | 8 | 1 | Yes | $C_2$ x 3, $C_4$ x 2, $C_2^2$ | |
| 8T3 | $C_2^3$ | 8 | 1 | Yes | $C_2$ x 7, $C_2^2$ x 7 | |
| 8T4 | $D_4$ | 8 | 1 | Yes | $C_2$ x 3, $C_2^2$, $D_{4}$ x 2 | 4T3 x 2 |
| 8T5 | $Q_8$ | 8 | 1 | Yes | $C_2$ x 3, $C_2^2$ | |
| 8T9 | $D_4\times C_2$ | 16 | 1 | Yes | $C_2$ x 3, $C_2^2$, $D_{4}$ x 2 | 8T9 x 3, 16T9 |
| 8T10 | $C_2^2:C_4$ | 16 | 1 | Yes | $C_2$, $C_4$, $D_{4}$ x 2 | 8T10, 16T10 |
| 8T11 | $Q_8:C_2$ | 16 | 1 | Yes | $C_2$ x 3, $C_2^2$ | 8T11 x 2, 16T11 |
| 8T12 | $\SL(2,3)$ | 24 | 1 | Yes | $A_4$ | 24T7 |
| 8T13 | $A_4\times C_2$ | 24 | 1 | Yes | $C_2$, $A_4$ | 6T6, 12T6, 12T7, 24T9 |
| 8T14 | $S_4$ | 24 | 1 | Yes | $C_2$, $S_4$ | 4T5, 6T7, 6T8, 12T8, 12T9, 24T10 |
| 8T18 | $C_2^2 \wr C_2$ | 32 | 1 | Yes | $C_2$, $D_{4}$ x 3 | 8T18 x 7, 16T39 x 6, 16T46, 32T24 |
| 8T19 | $C_2^3 : C_4 $ | 32 | 1 | Yes | $C_2$, $D_{4}$ | 8T19, 8T20, 8T21, 16T33 x 2, 16T52, 16T53, 32T19 |
| 8T20 | $C_2^3: C_4$ | 32 | 1 | Yes | $C_2$, $C_4$ | 8T19 x 2, 8T21, 16T33 x 2, 16T52, 16T53, 32T19 |
| 8T22 | $C_2^3 : D_4 $ | 32 | 1 | Yes | $C_2$ x 3, $C_2^2$ | 8T22 x 5, 16T23 x 9, 32T9 |
| 8T24 | $S_4\times C_2$ | 48 | 1 | Yes | $C_2$, $S_4$ | 6T11 x 2, 8T24, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2 |
| 8T25 | $C_2^3:C_7$ | 56 | 1 | Yes | 14T6, 28T11 | |
| 8T29 | $(((C_4 \times C_2): C_2):C_2):C_2$ | 64 | 1 | Yes | $C_2$, $D_{4}$ | 8T29 x 5, 8T31 x 2, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3 |
| 8T32 | $((C_2 \times D_4): C_2):C_3$ | 96 | 1 | Yes | $A_4$ | 8T32 x 2, 24T97 x 3, 24T149, 32T420 |
| 8T33 | $C_2^4:C_6$ | 96 | 1 | Yes | $C_2$ | 8T33, 12T58 x 2, 12T59 x 2, 16T183, 24T181 x 2, 24T182 x 2, 24T183 x 2, 24T184 x 2, 24T185, 24T186, 32T389 |
| 8T34 | $V_4^2:S_3$ | 96 | 1 | Yes | $C_2$ | 12T66 x 3, 12T67, 12T68 x 3, 12T69, 16T194, 24T195 x 3, 24T196 x 3, 24T197 x 3, 24T198, 24T199, 24T200 x 3, 32T398 |
| 8T36 | $C_2^3:(C_7: C_3)$ | 168 | 1 | Yes | 14T11, 24T283, 28T27, 42T26 | |
| 8T37 | $\PSL(2,7)$ | 168 | 1 | No | 7T5 x 2, 14T10 x 2, 21T14, 24T284, 28T32, 42T37, 42T38 x 2 | |
| 8T39 | $C_2^3:S_4$ | 192 | 1 | Yes | $S_4$ | 8T39 x 5, 16T442 x 3, 24T333 x 6, 24T431 x 2, 32T2213 x 2 |
| 8T41 | $V_4^2:(S_3\times C_2)$ | 192 | 1 | Yes | $C_2$ | 8T41, 12T108 x 2, 12T109 x 2, 12T110 x 2, 12T111 x 2, 16T435 x 2, 16T436, 24T516 x 2, 24T517 x 2, 24T518 x 2, 24T519 x 2, 24T520 x 2, 24T521 x 2, 24T522 x 2, 24T523, 24T524 x 2, 24T525 x 2, 24T526 x 2, 24T527, 24T528, 24T529, 32T2148, 32T2149 x 2 |
| 8T42 | $A_4\wr C_2$ | 288 | 1 | Yes | $C_2$ | 12T126, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459 |
| 8T45 | $(A_4\wr C_2):C_2$ | 576 | 1 | Yes | $C_2$ | 12T161, 12T163, 12T165 x 2, 16T1032, 16T1034, 18T179, 18T180, 18T185 x 2, 24T1490, 24T1492, 24T1493 x 2, 24T1494 x 2, 24T1495 x 2, 24T1503, 24T1504 x 2, 32T34597 x 2, 32T34598, 36T759, 36T760, 36T762, 36T763, 36T774 x 2, 36T775 x 2, 36T960, 36T961, 36T962 x 2, 36T963 x 2 |
| 8T48 | $C_2^3:\GL(3,2)$ | 1344 | 1 | No | 8T48, 14T34 x 2, 28T153, 28T159 x 2, 42T210 x 2, 42T211 x 2 | |
| 8T49 | $A_8$ | 20160 | 1 | No | 15T72 x 2, 28T433, 35T36 | |
| 9T1 | $C_9$ | 9 | 1 | Yes | $C_3$ | |
| 9T2 | $C_3^2$ | 9 | 1 | Yes | $C_3$ x 4 | |
| 9T3 | $D_{9}$ | 18 | 1 | Yes | $S_3$ | 18T5 |
| 9T5 | $C_3^2:C_2$ | 18 | 1 | Yes | $S_3$ x 4 | 18T4 |
| 9T6 | $C_9:C_3$ | 27 | 1 | Yes | $C_3$ | 27T5 |
| 9T7 | $C_3^2:C_3$ | 27 | 1 | Yes | $C_3$ | 9T7 x 3, 27T3 |
Results are complete for degrees $\leq 23$.