Results (displaying matches 1-50 of at least 5000) Next
| Label | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
|---|---|---|---|---|---|---|
| 2T1 | $C_2$ | 2 | -1 | Yes | ||
| 3T2 | $S_3$ | 6 | -1 | Yes | 6T2 | |
| 4T1 | $C_4$ | 4 | -1 | Yes | $C_2$ | |
| 4T3 | $D_{4}$ | 8 | -1 | Yes | $C_2$ | 4T3, 8T4 |
| 4T5 | $S_4$ | 24 | -1 | Yes | 6T7, 6T8, 8T14, 12T8, 12T9, 24T10 | |
| 5T3 | $F_5$ | 20 | -1 | Yes | 10T4, 20T5 | |
| 5T5 | $S_5$ | 120 | -1 | No | 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 | |
| 6T1 | $C_6$ | 6 | -1 | Yes | $C_2$, $C_3$ | |
| 6T2 | $S_3$ | 6 | -1 | Yes | $C_2$, $S_3$ | 3T2 |
| 6T3 | $D_{6}$ | 12 | -1 | Yes | $C_2$, $S_3$ | 6T3, 12T3 |
| 6T5 | $S_3\times C_3$ | 18 | -1 | Yes | $C_2$ | 9T4, 18T3 |
| 6T6 | $A_4\times C_2$ | 24 | -1 | Yes | $C_3$ | 8T13, 12T6, 12T7, 24T9 |
| 6T8 | $S_4$ | 24 | -1 | Yes | $S_3$ | 4T5, 6T7, 8T14, 12T8, 12T9, 24T10 |
| 6T9 | $S_3^2$ | 36 | -1 | Yes | $C_2$ | 9T8, 12T16, 18T9, 18T11 x 2, 36T13 |
| 6T11 | $S_4\times C_2$ | 48 | -1 | Yes | $S_3$ | 6T11, 8T24 x 2, 12T21, 12T22, 12T23 x 2, 12T24 x 2, 16T61, 24T46, 24T47, 24T48 x 2 |
| 6T13 | $C_3^2:D_4$ | 72 | -1 | Yes | $C_2$ | 6T13, 9T16, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2 |
| 6T14 | $\PGL(2,5)$ | 120 | -1 | No | 5T5, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 30T27, 40T62 | |
| 6T16 | $S_6$ | 720 | -1 | No | 6T16, 10T32, 12T183 x 2, 15T28 x 2, 20T145, 20T149 x 2, 30T164 x 2, 30T166 x 2, 30T176 x 2, 36T1252, 40T589, 40T592 x 2, 45T96 | |
| 7T2 | $D_{7}$ | 14 | -1 | Yes | 14T2 | |
| 7T4 | $F_7$ | 42 | -1 | Yes | 14T4, 21T4, 42T4 | |
| 7T7 | $S_7$ | 5040 | -1 | No | 14T46, 21T38, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418 | |
| 8T1 | $C_8$ | 8 | -1 | Yes | $C_2$, $C_4$ | |
| 8T6 | $D_{8}$ | 16 | -1 | Yes | $C_2$, $D_{4}$ | 8T6, 16T13 |
| 8T7 | $C_8:C_2$ | 16 | -1 | Yes | $C_2$, $C_4$ | 16T6 |
| 8T8 | $QD_{16}$ | 16 | -1 | Yes | $C_2$, $D_{4}$ | 16T12 |
| 8T15 | $Z_8 : Z_8^\times$ | 32 | -1 | Yes | $C_2$, $D_{4}$ | 8T15, 16T35, 16T38 x 2, 16T45, 32T21 |
| 8T16 | $(C_8:C_2):C_2$ | 32 | -1 | Yes | $C_2$, $C_4$ | 8T16, 16T36, 16T41 x 2, 32T22 |
| 8T17 | $C_4\wr C_2$ | 32 | -1 | Yes | $C_2$, $D_{4}$ | 8T17, 16T28, 16T42, 32T14 |
| 8T21 | $C_2^3: C_4$ | 32 | -1 | Yes | $C_2$ x 3, $C_2^2$ | 8T19 x 2, 8T20, 16T33 x 2, 16T52, 16T53, 32T19 |
| 8T23 | $\textrm{GL(2,3)}$ | 48 | -1 | Yes | $S_4$ | 8T23, 16T66, 24T22 |
| 8T26 | $(C_4^2 : C_2):C_2$ | 64 | -1 | Yes | $C_2$, $D_{4}$ | 8T26 x 3, 16T135 x 2, 16T141 x 2, 16T142 x 2, 16T152 x 2, 32T147 x 2, 32T148 x 2, 32T155, 32T156 |
| 8T27 | $((C_8 : C_2):C_2):C_2$ | 64 | -1 | Yes | $C_2$, $C_4$ | 8T27, 8T28 x 2, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176 |
| 8T28 | $(((C_4 \times C_2): C_2):C_2):C_2$ | 64 | -1 | Yes | $C_2$, $D_{4}$ | 8T27 x 2, 8T28, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176 |
| 8T30 | $(((C_4 \times C_2): C_2):C_2):C_2$ | 64 | -1 | Yes | $C_2$, $D_{4}$ | 8T30 x 3, 16T143 x 2, 16T167 x 2, 16T168 x 2, 16T169 x 2, 32T157 x 2, 32T177, 32T178 |
| 8T31 | $(((C_4 \times C_2): C_2):C_2):C_2$ | 64 | -1 | Yes | $C_2$ x 3, $C_2^2$ | 8T29 x 6, 8T31, 16T127, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3 |
| 8T35 | $C_2 \wr C_2\wr C_2$ | 128 | -1 | Yes | $C_2$, $D_{4}$ | 8T35 x 7, 16T376 x 4, 16T388 x 4, 16T390 x 4, 16T391 x 4, 16T393 x 4, 16T395 x 4, 16T396 x 4, 16T401 x 4, 32T852 x 4, 32T853 x 2, 32T854 x 2, 32T872 x 2, 32T876 x 4, 32T877 x 2, 32T880 x 2, 32T882 x 2, 32T883 x 4, 32T884 x 2, 32T885 x 2 |
| 8T38 | $C_2\wr A_4$ | 192 | -1 | Yes | $A_4$ | 8T38, 16T425, 16T427, 24T288 x 2, 24T425 x 2, 32T2185 x 2 |
| 8T40 | $Q_8:S_4$ | 192 | -1 | Yes | $S_4$ | 8T40, 16T444, 16T445, 24T332 x 2, 24T430 x 2, 32T2215 x 2 |
| 8T43 | $\PGL(2,7)$ | 336 | -1 | No | 14T16, 16T713, 21T20, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83 | |
| 8T44 | $C_2 \wr S_4$ | 384 | -1 | Yes | $S_4$ | 8T44 x 3, 16T736 x 2, 16T743 x 2, 16T748 x 2, 16T752 x 2, 24T708 x 4, 24T1151 x 4, 32T9340, 32T9355, 32T9459 x 4 |
| 8T46 | $A_4^2:C_4$ | 576 | -1 | Yes | $C_2$ | 12T160, 12T162, 16T1030, 16T1031, 18T182, 18T184, 24T1489, 24T1491, 24T1505, 24T1506 x 2, 24T1508, 32T34594, 36T764, 36T765, 36T766, 36T767, 36T964, 36T965 |
| 8T47 | $S_4\wr C_2$ | 1152 | -1 | Yes | $C_2$ | 12T200, 12T201, 12T202, 12T203, 16T1292, 16T1294, 16T1295, 16T1296, 18T272, 18T273, 18T274, 18T275, 24T2803, 24T2804, 24T2805, 24T2806, 24T2807, 24T2808, 24T2809, 24T2810, 24T2821, 24T2826, 32T96692, 32T96694, 32T96695, 32T96696, 36T1758, 36T1759, 36T1760, 36T1761, 36T1762, 36T1763, 36T1764, 36T1765, 36T1766, 36T1767, 36T1768, 36T1769, 36T1943, 36T1944, 36T1945, 36T1946 |
| 8T50 | $S_8$ | 40320 | -1 | No | 16T1838, 28T502, 30T1153, 35T44 | |
| 9T4 | $S_3\times C_3$ | 18 | -1 | Yes | $C_3$, $S_3$ | 6T5, 18T3 |
| 9T8 | $S_3^2$ | 36 | -1 | Yes | $S_3$ x 2 | 6T9, 12T16, 18T9, 18T11 x 2, 36T13 |
| 9T12 | $(C_3^2:C_3):C_2$ | 54 | -1 | Yes | $S_3$ | 9T12 x 3, 18T24 x 4, 27T6 |
| 9T13 | $C_3^2 : S_3 $ | 54 | -1 | Yes | $C_3$ | 9T11, 18T20, 18T21, 18T22, 27T11 |
| 9T15 | $C_3^2:C_8$ | 72 | -1 | Yes | 12T46, 18T28, 24T81, 36T49 | |
| 9T16 | $S_3^2:C_2$ | 72 | -1 | Yes | 6T13 x 2, 12T34 x 2, 12T35 x 2, 12T36 x 2, 18T34 x 2, 18T36, 24T72 x 2, 36T53, 36T54 x 2 | |
| 9T18 | $C_3^2 : D_{6} $ | 108 | -1 | Yes | $S_3$ | 9T18, 18T51 x 2, 18T55 x 2, 18T56, 18T57 x 2, 27T29, 36T87 x 2, 36T90 |
Results are complete for degrees $\leq 23$.